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Abstract 

Human craniofacial morphology is a hallmark of our species’ diversity and evolutionary 

history, shaped by adaptation, introgression, and global dispersal. Cranial globularization and 

chin emergence are well-documented morphological transformations whose genetic basis 

remains poorly understood, whereas Neandertal introgression is primarily documented 

through genomic evidence. How these evolutionary phenomena relate to craniofacial 

variation in present-day humans remains largely unresolved. Here, we leverage 3D 

craniofacial data from over 50,000 UK Biobank participants and employ a multivariate, 

multiscale genome-wide association approach to define axes of variation aligned with inter-

population allele frequency shifts, evolutionary processes, and clinical conditions. We identify 

continuous craniofacial trends within our cohort that mirror global patterns of genetic 

diversity, indicating that facial differences between human populations arise at the 

phenotypic axes already present within a single population. We further demonstrate that 

modern human-derived alleles underlie the origins of the human chin by reducing midfacial 

projection relative to other hominins and reveal the persistent effects of Neandertal 

introgression on craniofacial diversity today. We also model genetically informed 

endophenotypes for orofacial clefts, obstructive sleep apnoea, and myopia. These findings 

provide insights into our species’ evolutionary history and endophenotypes of clinical 

conditions and establish a framework for contextualizing craniofacial diversity into 

biologically meaningful axes of variation relevant to diverse scientific disciplines. 
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Main 

Human craniofacial morphology is a hallmark of our species’ diversity and evolutionary 

history. Its complexity arises from the coordinated development of multiple tissues1,2 and is 

governed by a highly polygenic genetic architecture3. The emergence of novel alleles during 

hominin evolution allowed natural selection and neutral processes to drive coordinated shifts 

in allele frequencies that distinguish Homo sapiens from other hominins. On the 

morphological level, this occurred most conspicuously via globularization of the braincase4 

(with concomitant changes in the cranial base and face5), in parallel to the derived emergence 

of a triangular mental eminence (i.e., the modern human chin), a feature whose adaptive 

significance remains a topic of debate6. On the genomic level, gene-regulatory divergence at 

human-accelerated regulatory elements in cranial neural crest cells (CNCCs), a transient 

multipotent population of cells that contribute to the majority of craniofacial structures1, has 

pointed to regulatory evolution as a major driver of craniofacial change7,8. Past human 

migrations have further shaped craniofacial variation by creating allele frequency gradients 

via long-term genetic drift, serial founder events9, and local adaptive pressures10. These 

gradients produced phenotypic contrasts that have been misinterpreted as biological 

evidence for socially constructed “race” categories, despite the underlying genetic and 

phenotypic continuity across populations11. 

 

Indeed, both derived and ancestral alleles persist in modern populations as single nucleotide 

polymorphisms (SNPs) that can influence craniofacial shape12–21. Some of these SNPs may 

additionally alter the genetic liability for congenital anomalies, such as orofacial clefts22, or 

contribute to complex health conditions in which craniofacial shape is a risk factor23. Another 

source of genetic variation affecting craniofacial shape16,24, as well as other complex traits25, 
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stems from introgressed DNA segments that persist in most contemporary populations 

outside Africa since interbreeding the with Neandertals ~50 kya26. 

 

Advances in our understanding of craniofacial variation related to evolutionary processes27–

30 and complex health conditions23,31 have largely stemmed from studies focusing on either 

morphology or genetic variation. However, these efforts have rarely integrated directional 

genomic signals with craniofacial shape, leaving a key biological question unresolved32: how 

do evolutionary, demographic, and health-related genomic signals shape morphological 

diversity in present-day humans? Here, using over 50,000 whole-head magnetic resonance 

(MR) images in the UK Biobank (UKBB), we create a large dataset of linked genetic and 

phenotypic data and address two major gaps: (i) expanding the catalogue of genetic variants 

associated with human craniofacial morphological variation through a multivariate, 

multiscale genome-wide association study (GWAS), and (ii) introducing a context-aware 

framework encompassing evolutionary and demographic processes and genetic susceptibility 

to clinical conditions. 
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Results 

An expanded catalogue of genetic variants associated with craniofacial shape 

We extracted craniofacial surfaces from high-resolution MR images (n = 50,622) in the UKBB 

(Fig 1a, Methods), using unrelated individuals of self-reported White-British ethnicity with 

similar genetic ancestry and a median age of 65. To capture shape variation, we mapped 

dense, homologous quasi-landmarks (n = 14,903) onto each individual, then decomposed 

these configurations into 67 hierarchical segments, enabling global and local shape analyses 

(Fig 1a; see Fig S1 and Supplementary Note for segment numbers and definitions). The 

configurations of each segment were Procrustes superimposed and summarized into 

principal components (PCs; n = 13–145) explaining 98% of variance after adjustment of shape 

data for covariates (sex, age, age-squared, anthropometric measures, scanner parameters, 

assessment centre/date, size, and the first ten genomic PCs). Per segment, we conducted a 

multivariate GWAS to test for association between its full set of PCs and each of the 8,922,008 

SNPs with a minor allele frequency (MAF) greater than 1%, spanning the autosomes and X-

chromosome. 
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Fig 1 Genome-wide discovery of global-to-local effects on craniofacial shape. (a) Extraction of the craniofacial surface from 
magnetic resonance (MR) images and segmentation into local segments. Hierarchical levels are indicated with roman 
numerals; the full surface is indicated “i”. (b) Brisbane plot showing the number of conditionally independent genome-wide 
significant (GWS) lead SNPs within 1Mb of each GWS lead SNP (n = 2579), i.e., lead SNP density. Non-significant and non-
lead SNPs are not shown. (c) H3K27ac signal in the 10 kb bin surrounding each GWS lead SNP. SNPs are grouped into five 
clusters based on activity across cell and tissue types. For SNP-cluster pairs with significant differences in effect localization 
(segment-R2; permutation MANOVA with post-hoc testing), segment-wise comparisons were performed using the Mann-
Whitney U test. P values are shown on a log scale. (d) Clustering of functional predictions (P < 0.01) of GWS SNPs (n = 1635) 
located near cranial neural crest cell (CNCC) ATAC peaks (≤750 bp), obtained using deep learning sequence-to-function (S2F) 
prediction models based on ChromBPNet. Columns represent seven S2F models predicting: (1) steady-state ATAC signal in 
CNCCs, (2) chondrocytes at day 5 (d5), (3) chondrocytes at day 9 (d9); and SOX9- (4, 5) and TWIST1-dependent (6, 7) effects 
on ATAC signal in CNCCs, characterized by (4, 6) median effective dosage (ED50) and (5, 7) full SOX9/TWIST1 depletion. Radar 
plot shows median effects per cluster. (e) LocusZoom plot of a ~1.8 Mb region surrounding OSR1 containing 18 independent 
GWS lead SNPs (diamonds). Phenotypic effect localization is indicated by colour matching the lead SNP, with intensity 
reflecting –log10(P) across craniofacial regions. For non-lead SNPs, colour indicates the most strongly linked lead SNP and 
intensity reflects LD. Radar plots show S2F predictions for selected SNPs in genomic order, with colour indicating the 
regulatory cluster in (d); centre sphere colour matches SNP colour in the LocusZoom plot. Contribution plots indicate how 
these SNPs influence S2F scores by creating transcription factor binding motifs. The model is indicated by ‘*’. 
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Across the 67 segments, we identified between 37 and 2054 conditionally independent 

genome-wide significant (GWS; P < 5e-8) lead SNPs which were aggregated into a total of 

2579 conditionally independent GWS lead SNPs located at 1175 non-overlapping genomic 

regions (Fig 1b; see Fig S2a for a Manhattan plot and Supplementary Data 1 for the full list of 

GWS lead SNPs). Of these, 2108 were also study-wide significant at an adjusted ⍺ level of 

1.04e-9 which considers the effective number of tests per SNP (Methods). Using three 

independent GWAS datasets, including whole-face meta-analyses by White et al. (n = 8246) 

and Zhang et al. (n = 9674), as well as the cranial vault GWAS by Goovaerts et al. (n = 4198), 

we replicated 973 (38.6%), 728 (30.0%), and 408 (16.1%) of all GWS lead SNPs, respectively, 

at P < 0.05 (Methods; Supplementary Data 2). Across the same datasets, 652 (25.9%), 425 

(17.5%), and 122 (4.8%), GWS lead SNPs respectively were also significant at a 5% false 

discovery rate (FDR). Non-replicating SNPs still showed a strong enrichment of signal in both 

facial datasets (Fig S2b), highlighting the substantial power increase in this work over previous 

studies. Linkage disequilibrium score regression33 (LDSC) intercepts ranged between 0.98 and 

1.04 (mean = 1.01; s.d. = 0.01) confirming the absence of residual confounding. The LDSC 

common-variant heritability (h2) of craniofacial shape was estimated as 22.4%, with a similar 

h2 for the whole face (23.4%) and whole cranial vault (22.1%), and up to 27.5% for the nose 

(facial segment 8; see Supplementary Data 3 for other segments). 

 

A high density of GWS SNPs was observed near genes encoding key craniofacial transcription 

factors (TFs) including TBX15, OSR1, MEIS1, RUNX2, and SOX9, where GWS lead SNPs shared 

their location with up to 17 other conditionally independent GWS lead SNPs (Fig 1b). The 

highest density was observed in the region surrounding PAX3 with 19 independent 

association signals. Overall, 2333 (90.5%) GWS lead SNPs had at least one secondary signal 
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within 1 Mb, while the average was 4.59, often with distinct association patterns across 

anatomical regions or segmentation levels (Supplementary Data 1). 

 

Re-analysis of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for the 

K27ac mark on histone 3 (H3K27ac) was used to investigate cell type-specific regulatory 

activity in the vicinity (10 kb) of the 2579 GWS lead SNPs. We observed an enrichment of 

H3K27ac signal in cranial neural crest cells (CNCCs; P = 2.06e-6; n = 12), embryonic craniofacial 

tissue from Carnegie stages 13–23 (CSs; P = 7.52e-13; n = 22), osteoblasts (P = 1.13e-4; n = 

15), and CNCC-derived chondrocytes (P = 4.75e-3; n = 4) relative to other, less related cell 

types (n = 74; right-tailed Mann-Whitney U test). Clustering the SNPs based on their H3K27ac 

signal revealed a group of SNPs (n = 206; group 2 in Fig 1c) with high activity in CNCCs, CSs, 

and CNCC-derived chondrocytes, while having low activity in osteoblasts and other cell types 

(Fig 1c). Meanwhile, the opposite was observed for group three (n = 295), which showed high 

activity in osteoblasts and low activity in other cell types, except for fibroblasts (in “other”). 

Furthermore, individual SNPs across the five groups varied in the patterns and amounts of 

phenotypic variance explained across the 67 craniofacial segments (P = 1.66e-2; F test using 

residual randomization34). Pairwise differences were significant (F test using residual 

randomization and Holm adjustment) between groups two and three (Padj = 7.6e-3), two and 

four (Padj = 1.0e-3), and two and five (Padj = 1.1e-3). Relative to groups four and five, the SNPs 

in group two explained more shape variance around regions tied to the frontonasal 

prominence, including the nose, orbits, and frontal bone (Fig 1c; minimum P = 3.64e-4; two-

tailed Mann-Whitney U test), whereas SNPs in group three explained suggestively more 

variance in the mandible relative to those in group two (minimum P = 2.18e-2). These results 
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demonstrate that cell type-specific activity in the direct vicinity of our GWS lead SNPs can be 

linked to craniofacial region-specific effects. 

 

To investigate cis-regulatory mechanisms underlying our GWAS loci in greater detail, we 

utilized seven sequence-to-function (S2F) deep learning models introduced previously35 and 

based on the ChromBPNet36 backbone to predict the functional impact of allele substitutions 

at GWS SNPs (n = 272,953). Three models predicted fold-changes in steady-state chromatin 

accessibility, as measured by ATAC-seq in CNCCs and CNCC-derived chondrocytes at 

differentiation day 5 (d5) and day 9 (d9). Four additional models predicted how 

concentrations of dosage-sensitive TFs, SOX9 and TWIST1, influence chromatin accessibility 

in CNCCs. Specifically, we modelled (i) fold-change in accessibility upon full TF depletion, 

where large effects suggest direct TF targets, and (ii) changes in median effective dosage 

(ED50), i.e., the TF concentration at which accessibility is halved, where lower ED50 indicates 

dosage sensitivity and higher ED50 reflects buffering. 

 

Clustering SNPs with strong predictions (P < 0.01 in ≥ 1 S2F model, n = 1635) revealed distinct 

cis-regulatory mechanisms (Fig 1d). For example, some SNPs were predicted to affect steady-

state accessibility in CNCCs, chondrocytes, or both, without altering TF dosage sensitivity, 

whereas others were predicted to primarily modulate SOX9 responsiveness. Strong 

predictions for TWIST1 dosage sensitivity often coincided with strong predictions for CNCC 

accessibility, and one cluster of SNPs was predicted to modulate both SOX9-dependency and 

chondrocyte accessibility, consistent with known TF functions37,38. Notably, we observed that 

many GWAS loci harbour SNPs from multiple clusters. For example, a ~1.8 Mb region near 

OSR1 harboured SNPs from four out of the six major clusters, most in strong LD with a nearby 
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lead SNP (Fig 1e). For a subset of these SNPs, we derived base-resolution contribution scores 

for the immediately surrounding sequence and assessed how each allele influenced these 

sequence contributions (Fig 1e). For example, rs3761715 alters a weak ‘Coordinator’ motif 

bound by TWIST1, which is predicted to affect steady state ATAC-seq signal in CNCCs. In 

contrast, rs10209246 alters a double E-box motif, previously shown to be bound by TWIST139 

and especially predictive of sensitivity to TWIST1 dosage35. rs824481 alters a SOX9 

palindrome motif, identified previously to be highly predictive of SOX9 responsiveness35. 

rs6755866, which is predicted to alter steady-state ATAC-seq signal in chondrocytes, alters a 

GC-rich sequences typically bound by the SP/KLF TFs. Notably, this alteration also reduces the 

contribution score of a nearby AP-1 binding site, a TF known to regulate chondrogenesis40, 

suggesting that this SNP modifies the larger context around the AP-1 site. Consistent with 

prior observations, the SNPs near the centre of ATAC-seq peaks were predicted to primarily 

affect steady-state accessibility, whereas those at the flanks modulate transcription factor 

responsiveness35 (Fig S1c). At loci containing independent GWS lead SNPs with distinct 

phenotypic effects, exemplified by the OSR1 locus, the associated variants are predicted to 

alter cis-regulatory activity in a cell type- and TF dosage-dependent manner (Fig 1e). This 

suggests a complex spatiotemporal pattern of cis-regulation at key craniofacial genes, 

facilitating pleiotropic roles of these genes in craniofacial morphology. 

 

Intra-cohort trait continuity extends to global diversity 

Geographical structuring of human populations, prompted by past migrations, has led to 

shifts in allele frequencies driven by a combination of neutral processes and local adaptive 

pressures9. By using the 1000 Genomes Project41 (1KG) dataset to identify frequency-shifted 

SNPs at craniofacial shape loci and subsequently modelling their joint effect, we assessed 
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whether phenotypic continuity within our cohort extends to encompass global patterns of 

craniofacial diversity. 

 

For 24 1KG populations, spanning five continents, a set of quasi-independent (r2 < 0.1) 

craniofacial predictor SNPs (n = 30–1848; Supplementary Data 5) was selected based on our 

GWAS signal and allele frequency differences relative to the British from England and Scotland 

(GBR; Fisher’s exact test; right tailed χ2). To model the effects of each set of frequency-shifted 

SNPs on craniofacial morphology, we first fit a multivariate linear model on the genotypes 

and phenotypes of our UKBB sample (n = 50,622; Methods). We then evaluated this model at 

population-average allele counts, producing two opposing point predictions in the phenotypic 

principal component analysis (PCA) space, uniquely defining a context-aware axis of shape 

variation associated with the directionality of the population divergence. The population-

aligned axes captured 6.72–14.14% of shape variance (Supplementary Data 5), significantly 

exceeding random axes (mean = 0.69%; s.d. = 0.18%; P < 1e-6; one-tailed empirical test). 

Variation along these axes exhibited approximately normal distributions (Fig 2a), suggesting 

that they represent broad phenotypic trends rather than outlier-driven effects. 

 

Expected shapes at the distribution margins exhibited moderate phenotypic differences 

relative to the UKBB mean shape as exemplified using the axes aligned to frequency shifts 

between GBR and Toscani in Italy (TSI), Finnish in Finland (FIN), Han Chinese in Beijing, China 

(CHB), and Yoruba in Ibadan, Nigeria (YRI) (Fig 2a). Moving further along these axes revealed 

phenotypes whose probability of occurring became exceedingly low under the multinomial 

allele frequency distribution of our UKBB sample (Fig 2a). For example, the CHB-aligned axis 

captured a less prominent nasal bridge with increased midfacial breadth and relatively 
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pronounced zygomatic regions (Fig 2a). The YRI-aligned axis captured a wider nasal alae and 

a broader alar base (Fig 2a), features previously associated with variation in nasal morphology 

across global populations and linked to climate adaptation in prior studies10. Additionally, the 

midface was slightly more prognathic, and the cranial vault displayed a more brachycephalic 

configuration (Fig 2a). The TSI-aligned axis was characterized by a more convex nasal profile 

with a prominent bridge and a downward-oriented tip, along with a narrower facial width, a 

pronounced mental region, and a more inclined frontal bone (Fig 2a). Finally, the FIN-aligned 

axis exhibited a relatively square mandibular contour, elevated zygomatic arches, and a lower 

nasal bridge (Fig 2a). 

 

 

Fig 2 Alleles in UKBB GWAS sample capture global patterns of craniofacial diversity. (a) Shape axes in the UKBB GWAS 
sample informed by 1000 Genomes Project (1KG) labels [Toscani in Italy (TSI); Finnish in Finland (FIN); Han Chinese in Beijing, 
China (CHB); and Yoruba in Ibadan, Nigeria (YRI)]. Distributions show the one-dimensional projections of UKBB individuals 
onto the shape axes. Shape visualizations are made at three and five units from the mean shape to illustrate expected 
variation at the distribution margins and beyond, respectively. Probabilities indicate the likelihood that a shape’s projection 
extends at least this far along the axis. (b) Phenotypic subspace formed by 1KG-informed phenotypes (n = 24) and the UKBB 
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mean shape. (c) Genetic ancestry space of 26 1KG populations (n = 2504) alongside randomly sampled UKBB individuals (n = 
2500). 

 

When projecting the 1KG-aligned axes (n = 24) into a phenotypic subspace using PCA 

(Methods), the first two PCs formed a triangular configuration that closely mirrored the 

structure of the first two genetic PCs (Fig 2b–c). This correspondence indicates that 1KG-

aligned phenotypic axes capture global patterns of craniofacial variation present in our UKBB 

cohort. Moreover, populations that were closer aligned geographically and genetically were 

projected onto more closely aligned phenotypic axes, despite SNP selection and model fitting 

being performed independently for each population. This concordance demonstrates 

robustness and validity of the axes. Collectively, these findings show that 1KG-aligned axes 

capture meaningful craniofacial variation within our UKBB European ancestry cohort, aligned 

with gradients of population divergence, revealing patterns that trace back to shared ancestry 

and historical dispersal. 

 

Derived alleles underlie the emergence of a modern human chin 

We next sought to investigate the evolutionary origins of a triangular mental eminence, a 

feature that emerged in Homo sapiens and that is absent in other hominins. In particular, we 

tested whether derived alleles collectively explain chin prominence and how these alleles may 

have simultaneously influenced other integrated anatomical structures. For this, we obtained 

the most likely ancestral and derived states of facial GWAS SNPs (whole face; P < 5e-8), 

previously inferred based on a six-way primate multisequence alignments42 (Fig 3a). Much 

like the axes capturing population divergence, we applied our context-aware approach to 

define an ancestral-derived shape axis based on the joint effect of homozygous ancestral and 

derived states across 1958 quasi-independent (r2 < 0.1) SNPs in our UKBB sample (n = 50,622; 
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Methods). The derived end of this axis revealed a prominent chin accompanied by a flatter 

and retrognathic midface (Fig 3b), while at the ancestral end, the chin had almost 

disappeared, and the face was more prognathic. These results confirm that the human chin 

can be explained by derived alleles and suggest that the same alleles contribute to reduced 

midfacial projection compared to other hominins. 

 

 

Fig 3 Genomic signatures of evolution and introgression reflected in present-day craniofacial diversity. (a) Conceptual 
schematic of hominin lineages relative to a macaque outgroup, illustrating “ancestral,” “derived,” and “Neandertal 
introgressed” allele categories. (b) Axis of facial variation associated with ancestral or derived states at craniofacial GWAS 
loci (n = 1958 SNPs). Facial renderings and outlines depict expected shapes at the extremes of the UK Biobank distribution 
(±3 Euclidean distance units). (c) Renderings compare facial phenotypes associated with ancestral and derived states 
modelled from SNPs significant for chin (n = 247) or midfacial (n = 1154) morphology. (d) Expected shape at the UKBB 
distribution margins (±3 Euclidean distance units) along the Neandertal-aligned shape axis modelled from introgressed SNPs 
(n = 79). (e) Vertex-wise map of variance explained by introgressed SNPs. (f) Heatmap showing local displacements of the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 3, 2026. ; https://doi.org/10.64898/2025.12.29.696848doi: bioRxiv preprint 

https://doi.org/10.64898/2025.12.29.696848
http://creativecommons.org/licenses/by-nc-nd/4.0/


shape in (d) relative to the UK Biobank mean; annotated with known anatomical features. (g) Cranial vault shape effects 
captured by the Neandertal-aligned shape axis magnified beyond the UKBB distribution margins (5 Euclidean distance units). 
(h) Comparative craniofacial effects captured by Neandertal-aligned and ancestral-aligned shape axes, highlighting a 
composite of both axes. (i) Validation of Neandertal-informed shape effects using canonical variate analysis on a sparse 
craniofacial landmark dataset from hominin skulls. Shapes from (h) are projected into this space, with corresponding axes 
indicated. 

 
To assess whether the genetic effects on the chin and midface are coupled, we recomputed 

the ancestral-derived phenotypic axis using only SNPs associated with midface or chin 

morphology (r2 < 0.1; P < 5e-8; facial segments 4 and 11 respectively). Derived alleles (n = 

1154) at loci associated with midfacial shape also increased chin prominence (Fig 3c right), 

and conversely, derived alleles (n = 247) at loci associated with chin shape reduced midfacial 

projection (Fig 3c left). Thus, in both directions, the derived state tended to produce a more 

prominent chin together with a flatter, less prognathic midface. These bidirectional effects 

indicate that the genetic architecture underlying these traits is closely aligned. 

 

Introgressed variants recapitulate Neandertal skull features in modern humans 

Next, we investigated how alleles introgressed from Neandertals ~50 kya contribute to 

craniofacial diversity today. A list of derived alleles with high confidence of being introgressed 

was obtained from Wei et al.25 (Fig 3a) and filtered down to 79 quasi-independent (r2 < 0.1) 

SNPs that reached P < 5e-8 in our craniofacial GWAS (whole craniofacial surface). Using our 

context-aware approach in the UKBB sample (n = 50,622), we obtained a Neandertal-aligned 

axis from the homozygous introgressed states, capturing 4.65% of shape variance. Facial 

features associated with an increase in introgressed alleles were visualized at the distribution 

margins of our UKBB sample (Fig 3d, Fig S3a). The relative confidence of local features was 

assessed using vertex-wise R2 (Fig 3e), highlighting a higher confidence in the upper and 

midface, including the nose, and aspects of the cranial vault (maximum R2 = 0.60%). The 
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lowest confidence was observed at the lower face, notably the chin (minimum R2 = 0.20%). 

Many of the associated craniofacial features match fossil evidence of Neandertal skulls43, 

including a prominent supraorbital torus, receding frontal bone, a wider nose, more 

prognathic midface, and flatter zygomatic arches (Fig 3f). Furthermore, the cranial vault was 

elongated with the point of greatest breadth positioned more posteriorly, in contrast to the 

more globular vault seen on the UKBB mean shape (Fig 3g). A clustering of individual SNP 

effects suggests that different features may be influenced by distinct sets of introgressed 

alleles (Fig S3b). These results shed light on the lasting effects of Neandertal introgression on 

the craniofacial traits of present-day humans. 

 

Modelling the directional effects of Neandertal introgressed alleles on the genetic 

background of modern humans yielded a virtual hybrid of both, showing more modern 

features in regions with a lower predicted contribution. To address this, we modelled the 

effects of introgressed SNPs on a genetic background with a higher proportion of ancestral 

alleles, then compared the resulting morphologies to a revised landmark dataset of hominin 

skulls, including modern Homo sapiens and Neandertals44 (Fig S3c). We extended our analysis 

of the face above to the full craniofacial surface by first recomputing the ancestral-aligned 

shape axis using 2869 quasi-independent SNPs at craniofacial GWAS loci (r² < 0.1; P < 5e-8). 

The axis captured 6.88% of shape variance. Notably, the ancestral-aligned and Neandertal-

aligned axes were positioned at a 90.1° angle, indicating that they captured largely 

uncorrelated features in our UKBB sample (Fig 3h). The composite gestalt (SAN) showed 

increased prognathism and a reduced chin, traits consistent with Neandertal facial 

morphology reported in the literature43. 
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To further validate that these axes reflected known morphological differences, we analysed 

cranial landmark data from 245 modern skulls (21 populations), 8 Neandertals, and 15 other 

extinct Homo. We sampled 100 landmarks spanning the maxilla, orbits, and neurocranium 

(Fig 3i), focusing on regions of minimal soft-tissue thickness, and indicated homologous 

landmarks on the modelled craniofacial surfaces (Supplementary Note and Fig S3c). Canonical 

variate analysis revealed that the first variate (CV1) captured differences between Homo 

sapiens and other Homo (Fig 3i, Fig S3d), while the second (CV2) reflected separation of 

Neandertals from early Homo. Projecting the genetically constructed gestalts from Fig 3h into 

this space, along with their associated axes, revealed strong alignment with skull-based shape 

differences between Homo sapiens and Neandertals (21.0° and 3.42° for the Neandertal and 

composite axes respectively). In a PCA space of the same cranial landmarks, the Neandertal-

aligned and composite axes were closer aligned to skull-based shape differences between 

Homo sapiens and Neandertals compared to random axes (P = 3.90e-3 and P = 9.90e-3 

respectively; empirical test; see Supplementary Note). Collectively, these findings indicate 

that Neandertal introgression has left a lasting craniofacial imprint in present-day humans, 

and that the effects modelled using our framework align with known skeletal differences 

between Homo sapiens and Neandertal skulls. 

 

Genetic liability-aware modelling reveals endophenotypes of clinical conditions 

Risk variants for etiologically complex clinical conditions often influence cellular dynamics in 

subtle, quantitative ways that are poorly captured by binary case-control outcomes. 

Endophenotypes are heritable, quantitative traits that exist between genetic predisposition 

and clinical manifestation and are closely aligned with the genetic effects on developmental 

mechanisms, whether the condition has manifested or not. We sought to leverage genetic 
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risk variants identified in independent GWAS datasets22,31,45 that overlapped with craniofacial 

shape loci to model craniofacial endophenotypes and demonstrate that they can stratify 

unseen cases from controls. Our analyses focused on one of the most prevalent congenital 

anomalies, cleft lip with or without cleft palate (CL/P), which affects 0.1% of all live births46, 

as well as two highly prevalent health conditions: obstructive sleep apnoea (OSA) and myopia, 

affecting roughly 12% and 23% of the world population, respectively47,48. 

 

We identified 48, 807, and 1015 quasi-independent (r2 < 0.1) SNPs jointly associated with CL/P 

and facial shape, BMI-adjusted OSA and facial shape, and myopia and craniofacial shape 

respectively at a 5% conjunctional FDR (Methods). Next, we used our context-aware 

framework to define endophenotype axes based on the homozygous states of susceptibility 

and protective alleles after jointly fitting genetic effect sizes on our UKBB sample (n = 50,622). 

 

The susceptibility-associated traits captured by the CL/P endophenotype axis included a wider 

upper and midface, a wider nasal base, a shorter philtrum, and a compressed lower face (Fig 

4a). To test whether these were aligned with CL/P case-control status, we compared them to 

an external dataset of syndromic and non-syndromic facial shape data available from the 

FaceBase49 Consortium [n = 3772; 66 genetic conditions with craniofacial dysmorphology, plus 

CL/P cases (n = 76) and unrelated controls (n = 54)]. After removing the effects of size, sex, 

age, and age-squared on facial shape, we constructed a PCA space and projected the CL/P 

endophenotype axis into this space (Fig S4a and Supplementary Note). Along the axis, cases 

showed moderate separation from controls (Fig 4a; Cohen’s d = 0.362, 95% CI = [0.011–

0.711]; P = 2.15e-2, one-tailed t test). Furthermore, the endophenotype axis was more closely 
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aligned with the CL/P cases than with any other of the 66 genetic conditions (Fig S4b–c; P = 

1.49e-2, one-tailed empirical test), indicating that it captures traits specific to CL/P (Fig S4d). 

 

 

Fig 4 Axes of variation aligned to genetic liability for clinical conditions. Distributions show the one-dimensional projections 
of new individuals not seen by the endophenotype model. Differences in projection scores between new cases and controls 
was assessed with a one-tailed t test. Visualizations are made at three Euclidean distance units from the UKBB mean shape 
to illustrate expected variation at the distribution margin. The main susceptibility-associated traits are indicated. (a) Cleft lip 
with or without cleft palate (CL/P)-informed axis indicating distributions of cases (n = 76) and controls (n = 54). (b) Obstructive 
sleep apnoea (OSA)-informed axis indicating distributions of OSA cases (n = 634), snoring cases (n = 1000), and non-snoring 
controls (n = 1000). (c) Myopia-informed axis indicating distributions of highly myopic cases (n = 527), moderately myopic 
cases (n = 1000), and controls (n = 1000). 

 

Facial shape is an established risk factor for OSA due to its correlation with upper airway 

morphology, yet consensus on specific susceptibility traits remains elusive23. The OSA 

endophenotype axis was estimated on a subset of our UKBB sample (n = 48,028), leaving out 
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634 OSA cases along with a random sample of 1000 snoring and 1000 non-snoring controls 

for validation. The susceptibility phenotype captured by the axis was independent of 

environmental factors like BMI (Fig S5a) and portrayed a wider, slightly longer, and markedly 

flatter facial profile with a retrognathic mandible (Fig 4b). This facial profile was remarkably 

consistent with the average facial differences between the unseen OSA cases and non-snoring 

controls (Fig S5b; P < 1e-6, one-tailed empirical test) and both groups could also be stratified 

based on their endophenotype scores (Fig 4b; Cohen’s d = 0.422, 95% CI: [0.321–0.522]; P = 

1.02e-16, one-tailed t test). Case-control stratification was much more effective using the 

whole facial endophenotype, compared to smaller anatomical segments (Fig S5c), suggesting 

that OSA susceptibility manifests in global facial dimensions. Moreover, facial endophenotype 

scores showed predictive potential on their own (average ROC-AUC = 0.618) and improved 

prediction accuracy when age, sex, and BMI were also considered (average ROC-AUC = 0.817; 

Fig S5d). The controls who reported snoring, a common symptom of OSA, also showed 

elevated endophenotype scores relative to non-snoring controls (Fig 4b; Cohen’s d = 0.176, 

95% CI: [0.088–0.263]; P = 4.41e-5, one-tailed t test). 

 

Developmental proximity and structural constraints50 suggest a link between craniofacial 

morphology and myopia, yet the associated craniofacial traits remain poorly defined. A 

myopia endophenotype axis was estimated on a subset of our UKBB sample (n = 48,135), 

leaving out 527 high and 1000 moderate myopia cases along with a random sample of 1000 

controls for validation. The resulting susceptibility phenotype portrayed a protruding upper 

and midface, a larger vertical orbital opening, bulging eyes, and an elongated cranium (Fig 

4c). These traits were consistent with the average craniofacial differences between unseen, 

high myopia cases and controls (Fig S6a; P < 1e-6, one-tailed empirical test), and both groups 
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exhibited moderate stratification based on their endophenotype scores (Fig 4b; Cohen’s d = 

0.188, 95% CI: [0.082–0.294]; P = 2.45e-4, one-tailed t test). Stratification of the high myopia 

cases from controls was mostly driven by localized morphology around the eyes and orbits 

(Fig S6b). Notably, the unseen, moderate myopia cases did not stratify from controls (P = 

0.272, one-tailed t test). Altogether, these results indicate significant overlap between 

genomic loci associated with craniofacial shape and those linked to clinical conditions and 

demonstrate the construction of genetic liability-aware endophenotypes capable of 

stratifying unseen cases from controls. 
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Discussion 

Our study addresses a central question in human biology: how evolutionary, demographic, 

and health-related genomic signals shape morphological diversity in present-day humans. By 

analysing craniofacial shape from MR scans of over 50,000 UKBB participants, we derived 

context-aware axes of shape variation modelled from an expanded catalogue of SNPs 

associated with craniofacial shape. These axes expose phenotypic configurations that are rare 

in our White-British UKBB cohort but mirror global patterns of genetic diversity, the 

evolutionary separation of modern humans from other hominins, the morphological legacy 

of Neandertal introgression, and risk phenotypes for clinical conditions. 

 

Central to our approach is the view that complex morphological structures embody a high-

dimensional, quantitative subset of the phenome, i.e., a continuum of observable traits that 

can be analysed and decomposed in numerous ways51. While linear and angular 

anthropometric measurements are useful shape descriptors, individual measurements tend 

to reflect a broad set of influences rather than specific evolutionary or developmental 

processes52. We addressed this by using a bottom-up approach to quantitatively model traits 

that are aligned with evolutionary and developmental processes, enabling us to meaningfully 

contextualize human craniofacial diversity. This complements previous studies that have 

adopted a top-down strategy, leveraging external cues in the phenotypic domain to improve 

biological alignment and thereby query specific genetic insights. Examples include heritability-

enriched traits informed by parent-offspring resemblance53, syndrome-aligned traits 

informed by resemblance to achondroplasia patients54, and traits aligned to the shared 

development of the brain and cranium based on morphological covariation55. 
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Modelling phenotypic axes aligned with allele frequency gradients across global populations 

revealed continuous trends within our cohort that mirror global patterns of genetic diversity. 

These findings reinforce that most axes of craniofacial variation, like genetic variation, lie 

within populations rather than between them, underscoring the fallacy of “racial traits” as 

biological absolutes and emphasizing a shared evolutionary and developmental basis for 

human diversity11. Interestingly, these axes captured traits consistent with adaptations to 

local climate, including nasal breadth and alar base features, where temperature and 

humidity correlate with nares width and internal nasal cavity shape10. By incorporating 

multiple populations from the same and different continents, our results extend earlier 

demonstrations of continuity between East Asian and European cohorts13 and highlight a 

degree of genetic effect-direction portability across ancestries. 

 

We found that derived alleles at craniofacial loci simultaneously increase chin prominence 

and reduce midfacial projection, whereas ancestral alleles do the opposite. This genetic 

coupling provides a parsimonious resolution to a long-standing debate56: rather than 

requiring a specific adaptation for a chin, a mental eminence can emerge as an integrated 

byproduct of facial retraction57. This interpretation aligns with the broader trend of cranial 

globularization and facial reduction in Homo sapiens relative to other hominins, where several 

craniofacial traits changed together under positive selective pressures4,28. These findings 

position the chin within a covarying developmental field governed by an integrated genetic 

architecture. 

 

Neandertal fossils reveal the craniofacial differences from Homo sapiens43, and ancient DNA 

studies have catalogued introgressed segments in modern genomes58. Yet, their aggregate 
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contribution to present-day craniofacial diversity has remained unclear, as several prior 

studies have focused on single loci16,24. We addressed this gap by jointly modelling the 

directional effects of confidently introgressed variants25 associated with craniofacial shape, 

revealing associations with a broad set of craniofacial traits that closely align with fossil 

expectations43. Notably, Neandertals lack a mental eminence43, and introgressed SNPs 

explained little variation in the chin. Crucially, our aim differed from previous efforts that 

sought to reconstruct individual Neandertal faces using polygenic models trained on present-

day populations18. Rather than predicting identities, we model effect directions within a 

modern genetic background to capture the associated mode of variation, avoiding 

inconsistencies that arise when projecting polygenic models across large evolutionary 

distances under divergent gene-environment contexts59. Overall, our findings reveal the 

craniofacial legacy of Neandertal introgression and highlight traits consistent with fossil data. 

 

We identified substantial genomic overlap between craniofacial shape and three prevalent 

clinical conditions: (i) CL/P, (ii) OSA, and (iii) myopia. These shared genetics were leveraged to 

derive endophenotype axes aligned with genetic liability that captured recognizable 

craniofacial configurations and stratified unseen cases from controls. The CL/P axis recovered 

the broader midface, wider nasal base, and shorter philtrum reported in family-based 

studies60,61. Additionally, the axis indicated a compressed lower face, which challenges 

previous findings60, but aligns with known biological mechanisms such as reduced 

mesenchyme proliferation in the developing lower facial processes62. OSA is a highly 

prevalent breathing disorder, affecting nearly one billion people worldwide, yet remains 

critically underdiagnosed and linked to poor health outcomes, underscoring the need for early 

detection and intervention48. Beyond lifestyle factors, BMI, and genetic predisposition, facial 
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morphology is an important risk factor because it covaries with upper airway structure23. Our 

OSA-aligned shape axis captured a facial risk profile independent of BMI, featuring a 

retrognathic mandible, the most commonly reported facial risk factor, alongside less 

frequently noted features, such as a flatter, wider, and slightly elongated facial profile23. 

These findings highlight opportunities to improve detection, risk stratification, and targeted 

interventions such as mandibular advancement devices whose efficacy depends on 

craniofacial morphology63. In the general population, myopia is the leading cause of vision 

loss worldwide47, however, the associated craniofacial traits remain poorly defined. 

Observations in craniosynostosis, where altered orbital morphology and ophthalmic 

complications frequently co-occur, indicate a developmental link between craniofacial 

structure and refractive errors64. Here, our myopia-aligned axis emphasized orbital and 

upper-midface changes consistent with developmental proximity and structural coupling 

between craniofacial and ocular growth50. Interestingly, we identified an elongated, 

narrowed cranium and upper-midface projection as risk factors for myopia, aligning with the 

inverse observation of high hypermetropia prevalence in patients with coronal 

craniosynostosis, who exhibit shorter crania, midface hypoplasia, and shallower orbits64,65. 

Notably, our axis stratified severe but not moderate cases, suggesting that craniofacial 

morphology may play an underappreciated role in high myopia. Overall, our findings 

demonstrate that genetic liability for clinical conditions may manifest partially in craniofacial 

endophenotypes. 

 

While our analyses revealed remarkable continuity in human craniofacial variation, they were 

based on the genetic and phenotypic diversity present within the UKBB cohort, which consists 

primarily of older individuals with similar genetic ancestry and self-reported White-British 
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ethnicity. Future studies should therefore include more diverse populations in terms of 

ancestry and demographics. This is particularly important for clinical applications, where early 

risk stratification is critical and when risk profiles may depend on population-specific alleles 

that were not captured in our work because they are absent or non-polymorphic in this 

sample. 

 

We emphasize that our approach and analyses focus on average phenotypic trends within the 

cohort, aiming to contextualize morphological diversity in this specific sample. This 

perspective is fundamentally different from identity prediction, where individuality is 

embedded in deviations from average trends. We further emphasize that the craniofacial 

configurations presented in this work illustrate hypothetical extremes, representing expected 

average morphology at the margins of the cohort’s multivariate shape distribution. While 

meaningful for highlighting phenotypic trends, they do not correspond to any specific 

individual, population-level average, Neandertal specimen, or group outside the cohort. 

 

The main input to this work was an expanded catalogue of genetic variants associated with 

craniofacial shape, initially generated by conducting a multivariate, multiscale GWAS. This 

initial discovery phase was essential for identifying craniofacial effects beyond the face and 

establishing a genetic basis that reflects the integrated nature of the craniofacial complex, a 

critical aspect to the interpretation of evolutionary processes66. In doing so, we address a gap 

left by comparable GWAS focused on facial variation12,13,18, which were limited by available 

imaging and phenotyping methods, and additionally identified roughly ten times as many 

independent GWS SNPs. While earlier work highlighted a subset of facial shape loci with 

multiple distinct phenotypic effects12,18, our findings instead show that such complexity is 
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ubiquitous, especially near genes with established roles in craniofacial development. Even at 

individual loci, we reveal additional complexity in spatial regulation by mapping SNP effects 

to specific anatomical regions and predict diverse cis-regulatory strategies through the 

application of recently developed S2F models35,36. 

 

In conclusion, our study demonstrates that the craniofacial shape of contemporary humans 

embodies genomic signatures of evolution, migration, and health, and that these signals can 

be disentangled through context-aware axes derived from large-scale imaging and genomic 

data. 
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Methods 

Ethics statement 

All participants of the UK Biobank (https://www.ukbiobank.ac.uk/) provided written informed 

consent. Access to individual-level UKBB data was approved under application number 88320. 

Local institutional approval (S63179) was granted for this study. 

 

Image processing and quality control 

We obtained 71,220 T1-weighted MR head scans from 66,021 UKBB participants (mean age 

64.9 years; 51.9% female) to extract craniofacial shape. Scans were corrected for gradient 

nonlinearity and intensity bias (N4 algorithm67) and denoised via consensus reconstruction 

from 300 non-linear registrations (Elastix68) as described in previous work21. Head surfaces 

were isolated by isosurface extraction and mapped to a bilaterally symmetric template 

comprising 19,734 dense quasi-landmarks using rigid alignment (RANSAC69) and non-rigid 

surface registration (MeshMonk70). The regions surrounding the ears and neck were excluded 

due to their higher complexity and susceptibility to imaging artifacts. Shapes were aligned by 

Generalized Procrustes Analysis (GPA) and symmetrized. 

 

To identify artefacts, we first curated a sample of 3500 anatomically diverse, artefact-free 

shapes and used them to determine an empirical per-vertex error distribution to determine 

whether vertices were outliers in the rest of the sample using a leave-100-out approach. Once 

applied to the rest of the sample, shapes with less than 50% intact anatomy were omitted 

from further analysis and for the remaining shapes, outlier vertices were treated as missing 

data followed by imputation by reconstruction after incomplete data PCA71 on the whole 

sample. 
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The resulting vertex configurations were adjusted for the following covariates using partial 

least squares regression (Matlab 2024b: plsregress): sex (field: 31); age and age squared (field: 

21003); standing height (field: 12144); weight (field: 12143); position in scanner (field: 25756–

25759); assessment centre and date (field: 53, 54); whole head size (field: 25000); centroid 

size of the symmetrized craniofacial mesh; and the ten first genomic PCs. For all covariates 

except sex and assessment centre, extreme outliers (at >6 s.d.) were removed, and missing 

values were mean-imputed. 

 

Since positional variability in the craniofacial configurations is superimposition dependent, 

we performed a hierarchical segmentation of the craniofacial surface. Initially, the face and 

cranial vault were separated in correspondence with the underlying viscero- and 

neurocranium. Since the cranial vault is globular and previous work21 confirmed that genetic 

variants predominantly affect its global dimensions, only a single split was performed by 

approximately following the coronal suture, yielding anterior and posterior vault segments. 

Furthermore, given the highly modular nature of facial shape, a data-driven segmentation 

was performed, guided by a combined similarity matrix (RV and Euclidean distance) to ensure 

anatomical coherence, yielding a facial segmentation that was highly concordant with 

previous works12–14. For each of the resulting 67 segments, we extracted multivariate shape 

descriptors using PCA and retained PCs that captured 98% of the variance. Further details on 

image processing can be found in the Supplementary Note. 

 

Genotyping and quality control 
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From the UKBB v3 imputed genotypes (field: 22828), available in BGEN v1.2 format, we 

extracted individuals with available imaging data who had self-reported White-British 

ethnicity and clustered in a genetic PCA space (field: 22006). Variants on the autosomes and 

X chromosome were extracted and filtered for an info score greater than 0.3, MAF greater 

than 1%, genotype failure rate lower than 5%, and in Hardy-Weinberg equilibrium (P value > 

1e-6) using PLINK72 v2.0. Finally, relatives up to the third degree were removed using KING 

with a kinship coefficient cutoff of 0.0442. Population structure was captured using the first 

10 genomic PCs obtained by using PLINK72 v2.0 (--pca) on a pruned set of high-quality 

autosomal SNPs (genotyping rate > 98%, r2 < 0.1 across a 500kb window) located outside 

known regions of long-range LD73. 

 

GWAS 

The final dataset for GWAS consisted of 50,662 individuals (24,261 male and 26,401 female) 

and 8,922,008 variants. Autosomal variants were encoded using the additive model (0/1/2), 

whereas variants on the X chromosome were encoded additively in females and hemizygously 

(0/2) in males. Canonical correlation analysis (CCA) was used to test each SNP against the full 

set of morphological variables in each craniofacial segment separately. A right-tailed F test 

was used to obtain P values. 

 

Definition of lead variants 

First, to assign GWS SNPs to non-overlapping genomic regions, an LD-based clumping 

algorithm was used, equivalent to the default FUMA74 (SNP2GENE) algorithm. Briefly, 

associations across all 67 craniofacial segments were aggregated into a single GWAS by taking 

the minimal P, and all SNPs were clumped with the most significant SNP in LD using two-stage 
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clumping (r2 = 0.6, then r2 = 0.1). For these SNPs, LD blocks (r2 ≥ 0.6) were estimated, and any 

two SNPs were merged into the same genomic region if the outermost coordinates of their 

LD blocks were closer than 250 kb. This resulted in 1175 independent, non-overlapping 

genomic regions. Next, independently significant signals, referred to as “lead SNPs”, were 

identified through conditional testing within each region. Any additional lead SNP was 

required to be genome-wide significant (P < 5e-8) for at least one craniofacial segment after 

adjusting that segment for the genotype vectors of all prior lead SNPs from the same region. 

This resulted in 2579 independently significant SNPs. 

 

Study-wide significance threshold 

To account for the increased multiple testing burden from testing 67 craniofacial phenotypes, 

a Bonferroni-style study-wide significance threshold was calculated by dividing 5e-8 by the 

effective number of tests per SNPs. Using 10,000 permutations of 100 randomly selected 

SNPs, a null distribution of minimal P values across the 67 phenotypes was generated. 

Following the approach by Kanai et al75, the effective number of independent tests was 

estimated as 48.2 (s.e.: 2.3), calculated as 0.05 divided by the fifth percentile of the empirical 

null distribution, resulting in a study-wide significance threshold of 1.04e-9. A total of 2,108 

(81.7%) independent lead SNPs were significant at this ⍺ level. 

 

Replication of GWS SNPs 

The replication of GWS variants was performed using independent, previously published 

GWAS data on facial and cranial vault shape. We selected recent (< 5 years old), independent, 

large-scale (n = 4198–9674) European12 and East Asian13 whole-face GWAS meta-analyses, 

and a European whole-cranial vault GWAS21. For each lead variant that was missing in any of 
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the replication dataset, the SNP in strongest LD (in-sample; and r2 > 0.4) was tested for 

replication instead. We considered a SNP successfully replicated at a nominal ⍺ level of 0.05. 

Additionally, a 5% FDR threshold was calculated using the Benjamini-Hochberg procedure. 

 

LDSC 

For each individual shape PC across all 67 craniofacial segments, univariate GWAS summary 

statistics were generated and LDSC was performed using the HapMap 3 reference list 

(excluding the human major histocompatibility region) and pre-computed 1000 Genomes 

Phase 3 European LD scores33. The SNP-based heritability of each craniofacial segment was 

calculated as the sum of its per-PC heritability estimates, weighted by their eigenvalues. 

Intercepts ranged between 0.98 and 1.04, with a mean of 1.01 (s.d.: 0.01), confirming no 

residual confounding. 

 

H3K27ac data processing 

H3K27ac ChIP-seq data from a variety of cell types and tissues (n = 127) were obtained from 

public repositories, including ENCODE, SRA, and GEO (Supplementary Data 4). Pre-processing 

was done following the pipeline described in White et al.12 Briefly, the raw sequence files 

(FASTQ format) were aligned to the human genome build 19 using Bowtie2, then sorted and 

indexed with Samtools. Next, read counts per 10 kb genomic bin were calculated (Bedtools: 

coverage) and normalized to reads per million (RPM). Inter-dataset variability was accounted 

for by performing quantile normalization (R: normalize.quantiles). Genomic bins overlapping 

with at least one of the 2579 lead SNPs were retained for analysis. 
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Cell types were grouped into CNCCs (n = 12), Carnegie stages (CS13–23; n = 22), osteoblasts 

(n = 15), chondrocytes (n = 4), and other (n = 74). Finally, the 2579 lead SNPs were clustered 

based on the log-transformed, normalized counts using a weighted k-means++ clustering 

algorithm (Matlab 2024b: kmeans). Weights were proportional to !
√#

 to avoid that the 

clustering was disproportionately influenced by a specific group. Enrichment of H3K27ac 

signal in each group relative to the ‘other’ group was assessed by a Mann-Whitney U test 

(two-tailed) on the median signal across SNPs. 

 

Sequence-to-function predictions 

S2F models predicting steady state accessibility in CNCCs or chondrocytes were obtained by 

running the full ChromBPNet v0.1.1 pipeline with default parameters on a consolidated BAM 

file of all unperturbed ATAC-seq samples. For CNCCs, we used ATAC-seq data and peak set 

from Naqvi et al76. For chondrocytes we used ATAC-seq data from Long et al.77 and called 

ATAC-seq peaks using macs2. Five independent train-test-validation splits were used. 

 

S2F models predicting SOX9 or TWIST1 responsiveness (ED50 or full depletion effects) were 

obtained as described in Naqvi et al35. Each of the five steady-state CNCC ChromBPNet models 

(one from each training split) was fine-tuned with the effect size of full TF depletion or ED50, 

as defined in Naqvi et al35. Full depletion effects (log2 fold-change in ATAC-seq signal) for all 

151,457 ATAC-seq peaks was used for fine-tuning, whereas for ED50 fine-tuning was limited 

to the set of 35,712 SOX9-dependent ATAC-seq peaks or the set of 50,850 TWIST1-dependent 

ATAC-seq peaks as defined in Naqvi et al35. Learning rate was set to 1e-3 as in the original 

ChromBPNet training. Models were trained for 50 epochs but had an early stopping callback 

with patience of 5 epochs. The best-performing model (lowest loss on the validation set) was 
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used. The same loss functions as the pretrained model were used, except the weight for the 

multinomial NLL loss (for the base-resolution profiles) was set to 0. Reverse-complemented 

sequences were used as data augmentation. 

 

SNP effects on any of the seven molecular phenotypes predicted by the seven S2F models 

were obtained using the ChromBPNet variant-scorer function 

(https://github.com/kundajelab/variant-scorer). Predictions were made for each fold and 

averaged across all five folds for each model. For selected SNPs at the OSR1 locus, 

contribution scores in a 200bp window around each SNP were generated for the reference 

and alternate alleles using the variant_shap.py function. 

 

Predictions were normalized between the S2F models by using a rank-normal transformation 

and subsequently squaring the data, effectively aligning it to a one degree of freedom χ2 

distribution. The latter was done as the sign of the prediction is tied to the arbitrary choice of 

reference allele and to produce distributions with heavier tails as in the raw predictions. 

Hierarchical clustering was performed on GWS SNPs with substantial predictions (P < 0.01) in 

or near the combined set of CNCC and chondrocyte ATAC peaks (≤ 750 bp) based on pairwise 

Euclidean distance and Ward linkage (Matlab 2024b: linkage). 

 

Ancestral-derived alleles 

Ancestral alleles at each SNP were obtained from the 1000 Genomes41 Phase 3 variant call 

format (VCF) files, where the ancestral state at each SNP was inferred from the six-primate 

Enredo-Pecan-Ortheus (EPO)42 alignments available in Ensembl v71. Only SNPs with high-

confidence calls were intersected with GWAS SNPs, meaning that the human ancestral state 
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inferred from the human-chimp-macaque alignment agrees with the human-chimp ancestor 

and the chimp. After intersecting the resulting list with GWS SNPs for the whole craniofacial 

surface, whole face, midface (facial segment 4), and chin (facial segment 11), SNPs were 

pruned using in-sample LD (r2 < 0.1) whilst prioritizing the most strongly associated SNP 

(PLINK72 2.0: --clump), yielding 2869, 1958, 1154, and 247 approximately independent 

predictor SNPs for the respective craniofacial segments. 

 

Neandertal introgressed alleles 

A list of 235,592 Neandertal informative mutations was obtained from Wei et al.25 who 

expanded the list from Sankararaman et al.58 to incorporate strongly linked (r2 > 0.99 and 

within 200 kb) SNPs in the UK Biobank imputed dataset. After filtering for SNPs that reached 

P < 5e-8 in the GWAS, had a MAF > 1%, and whose derived allele was not observed in any of 

the YRI (n = 108) samples from the 1000 Genomes Phase 3 dataset41, 2131 SNPs were 

retained. A set of 79 approximately independent predictor SNPs was obtained by pruning this 

set using in-sample LD (r2 < 0.1) whilst prioritizing the most strongly associated SNP in the 

GWAS (PLINK72 2.0: --clump). 

 

Population informative SNPs 

All GWAS SNPs were tested for differences in allele frequency between the GBR and each of 

the other populations in the 1000 Genomes Phase 3 dataset41 using Fisher’s exact test (right 

tailed χ2). We chose GBR since they were genetically closely aligned with our UKBB sample 

(Supplementary Data 5). The resulting P values were consistent with Wright’s FST values, 

calculated using PLINK72 2.0 (--fst). Given the different degrees of differentiation between 
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intra- and inter-continental populations, sets of approximately independent predictor SNPs 

were selected slightly differently in both cases.  

 

For non-European populations, SNPs were first filtered to have P < 5e-8 in both the GWAS on 

the whole craniofacial surface and in the scan for allele frequency differences, whereas for 

European populations, conjunctional FDR analysis78 was applied to jointly reject both null 

hypotheses instead, retaining SNPs at a 5% threshold. Utah residents with Northern and 

Western European ancestry (CEU) yielded no differentiated SNPs relative to GBR and were 

excluded from downstream analysis. To obtain quasi-independent predictor SNPs, the most 

strongly associated GWAS or conjunctional FDR signal was prioritized when pruning for LD as 

above. 

 

Susceptibility alleles 

GWAS meta-analysis summary statistics of cleft lip with or without cleft palate (n = 170 cases, 

988 case-parent trios, and 835 controls) were obtained from Leslie et al22. BMI-adjusted 

GWAS meta-analysis summary statistics of binary sleep apnoea status in FinnGen and the 

Million Veterans Project (MVP; n = 749,890) were obtained from Kurniansyah et al31. GWAS 

summary statistics for binary myopia status in the MVP (n = 65,574 cases and 333,242 

controls) were obtained from Verma et al45. These studies were carefully selected to avoid 

overlap with our UKBB sample. Conjunctional FDR analysis78 was applied to jointly test if a 

SNP was associated with craniofacial (whole craniofacial surface) or facial shape (whole face) 

and the condition. Based on prior knowledge from the literature, we focused on the face for 

CL/P and OSA and examined the broader craniofacial surface for myopia. To obtain quasi-
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independent predictor SNPs, the most strongly associated conjunctional FDR signal was 

prioritized when pruning for LD as above. 

 

Context-informed shape axes 

Case-control shape axes capturing the craniofacial effects associated with case-control status 

were obtained by connecting the average shapes of cases (𝒀$𝒄𝒂𝒔𝒆) and controls (𝒀$𝒄𝒐𝒏𝒕𝒓𝒐𝒍). The 

axis is represented by its unit vector, denoted 𝒖𝑪𝑪 (Eq. 1). 

𝒖𝑪𝑪 =
𝒀/𝒄𝒂𝒔𝒆0𝒀/𝒄𝒐𝒏𝒕𝒓𝒐𝒍
‖𝒀/𝒄𝒂𝒔𝒆0𝒀/𝒄𝒐𝒏𝒕𝒓𝒐𝒍‖

     (1) 

 

To estimate a polygenic shape axis, a set of 𝑁 SNPs (𝑥!, 𝑥2, … , 𝑥3) was regressed onto the 

segment-specific PC scores (𝒀) in the full GWAS sample (n = 50,662) using partial least squares 

regression (Matlab 2024b: plsregress) under the additive genetic framework (Eq. 2). 

Consistent with the GWAS, we retained PCs explaining 98% of shape variance. No additional 

covariates were included, as all shape data had been pre-adjusted prior to PCA. Only SNPs on 

the autosomes were included in the model. 

𝒀 = 𝜷𝟎 + ∑ 𝜷𝒊𝑥63
67!      (2) 

 

Polygenic shape axes were obtained slightly differently depending on the application. In the 

case of population-differentiated SNPs, fitted shapes for population 𝑃, denoted 𝒀𝑷/ , were 

obtained by evaluating the model at twice the population mean allele frequency for each SNP, 

denoted 𝑎6,: (Eq. 3). 

𝒀𝑷/ = 𝜷𝟎/ + 2∑ 𝜷;/𝑎6,:3
67!      (3) 
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The corresponding phenotypic axis was obtained by connecting 𝒀𝑷/  with the fitted values of 

our UKBB sample, which is simply the mean shape (𝒀$). The unit vector along this axis is 

denoted 𝒖𝑷 (Eq. 4). 

𝒖𝑷 =
𝒀𝑷<0𝒀/

=𝒀𝑷<0𝒀/=
      (4) 

 

To construct polygenic shape axes for other purposes, including Neandertal introgressed, 

ancestral, derived, and risk alleles, SNPs were first recoded such that 𝑥6∗ reflected the count 

of the respective allele type (Eq. 5). 

𝒀 = 𝜷𝟎 + ∑ 𝜷𝒊𝑥6∗3
67!      (5) 

The model was subsequently evaluated at the homozygous states (e.g., two ancestral versus 

zero ancestral alleles at each SNP), yielding fitted values 𝒀𝟐/  and 𝒀𝟎/  used to define the shape 

axis with its unit vector 𝒖𝑯 (Eq. 6).  

𝒖𝑯 =
𝒀𝟐<0𝒀𝟎<

=𝒀𝟐<0𝒀𝟎<=
= ∑ 2𝜷𝒊.

/01
=𝒀𝟐<0𝒀𝟎<=

    (6) 

 

For all purposes, differential gestalts used for visualizing affected anatomy were displaced by 

𝑘 Euclidean distance units along the phenotypic axis (Eq. 7) with values for 𝑘 indicated 

throughout the results. We opted to use unit displacements to more straightforwardly 

produce phenotypes with comparable deviations from the mean. 

𝒀(𝒌) = 𝒀$ + 𝑘𝒖     (7) 

To obtain an individual-level score, denoted 𝑠6  for individual 𝑖 along any shape axis, the 

individual’s shape, denoted 𝒚𝒊 was projected onto the axis via the dot product with its unit 

vector (Eq. 8). 

𝑠6 = 𝒚𝒊 ∙ 𝒖      (8) 
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Case-control status 

Within our UKBB GWAS sample, sleep apnoea cases (n = 634) were identified using the ICD-

10 code G47.3 (field: 41270 — “Sleep apnoea”). Snoring cases (n = 17,146) were obtained 

from the UKBB touchpad questionnaire data (field: 1210 — Q: “Does your partner or a close 

relative or friend complain about your snoring?”). Individuals without the ICD-10 code for 

sleep apnoea and who reported no snoring were considered controls (n = 30,665). 

Additionally, individuals were grouped as highly myopic (dioptre ≤ –6.00; n = 527), moderately 

myopic (–0.75 < dioptre ≤ –6.00; n = 3114), or control (n = 7110) as in Guggenheim et al79 

(field: 20262). Logistic regression (matlab 2024b: fitglm) of the shape PCs onto case-control 

status, followed by a deviance test (right tailed χ2) was used to test the validity of (cranio)facial 

shape as a biomarker for case-control status. 

 

1KG ancestry space 

SNPs were intersected across UKBB and the 1KG dataset (n = 2504 individuals) and were 

retained if they had a MAF > 1% and a genotyping rate > 98% in both datasets. A genetic 

ancestry space was constructed with PLINK72 v2.0 (--pca) using a pruned set of autosomal 

SNPs (r2 < 0.1 across a 500kb window) located outside known regions of long-range LD73. A 

randomly selected sample of 2500 UKBB participants was projected into the PCA space. 

 

Phenotypic subspace of axes aligned to population divergence 

For each of the 24 1KG populations (excluding GBR and CEU), we constructed a corresponding 

phenotypic axis and sampled the expected shapes at three positive Euclidean distance units 

along that axis. Because all sampled shapes exhibited similar magnitudes of deviation from 
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the UKBB mean shape, we rescaled these differences to reflect population divergence by 

multiplying them by the population-level FST between GBR and each respective 1KG 

population. Finally, we generated the phenotypic subspace by performing PCA on the 

recalibrated data. 

 

Global and local normal displacements 

Global and local shape differences between two meshes were quantified by computing 

displacements along the surface normals at each vertex. Unless stated otherwise, the UKBB 

mean shape was used as the reference. For global differences, normal displacements were 

calculated once after a Procrustes superimposition using all vertices. For local differences, 

neighbourhoods cantered on each vertex and spanning 10% of the craniofacial mesh were 

defined based on mesh adjacency. Each corresponding neighbourhood pair from the two 

meshes was then Procrustes superimposed, and normal displacements were calculated at the 

centre vertex. 
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Data availability 

UK Biobank data is available for bona fide researchers worldwide for health-related research 

in the public interest, accessed through a formal application process via the UK Biobank 

website (https://www.ukbiobank.ac.uk/). The FaceBase (https://www.facebase.org/) data is 

available to researchers via controlled access under accession number FB00000861. GWAS 

summary statistics for all 67 craniofacial segments are available from GWAS Catalog 

(https://www.ebi.ac.uk/gwas/home) upon publication of this work. The CL/P, OSA, and 

myopia GWAS summary statistics are available from GWAS Catalog under accession numbers 

GCST90652505, GCST90693190, and GCST90475880 respectively. An overview of publicly 

available H3K27ac datasets is available in Supplementary Data 4. The 1KG dataset is freely 

available at (https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/). A list of 

Neandertal-introgressed variants is available from Wei et al.25 on Github 

(https://github.com/AprilWei001/NIM/blob/main/Other/expandedNIM.tags). Raw sequence 

files for training S2F models are available from Gene Expression Omnibus (GEO: GSE267008, 

GSE205904). Processed sequence data and pre-trained S2F models are available from Naqvi 

et al.35 on Zenodo (https://zenodo.org/records/14633030). 

 

Code availability 

KU Leuven provides the MeshMonk v.0.0.6 spatially dense facial-mapping software, free to 

use for academic purposes available at (https://github.com/TheWebMonks/meshmonk). The 

latest version is available from the FigShare repository of a previous publication 

(https://doi.org/10.6084/m9.figshare.c.6858271.v1). Matlab implementations of the 

hierarchical spectral clustering to obtain facial segmentations are available from a previous 
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publication (https://doi.org/10.6084/m9.figshare.7649024.v1). The following software 

packages are available from Github: conditional FDR (https://github.com/precimed/pleiofdr), 

ChromBPNet (https://github.com/kundajelab/chrombpnet), variant-scorer 

(https://github.com/kundajelab/variant-scorer). The statistical analyses in this work were 

based on functions in Matlab 2024b, Python 3.12, R v4.5.1, PLINK 2.0, MeshMonk v0.0.6, 

GREAT v4.0.4, LDSC v1.0.1, ChromBPNet v0.1.1, R packages (geomorph 4.0.10, MASS 7.3-65, 

Morpho 2.13, ggplot2 3.5.2, caret 7.0-1), and Python packages (SimpleITK 2.5.3, Open3D 

0.19.0, NumPy 2.3.4, SciPy 1.15.3, joblib 1.5.2).  
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