UC Irvine

UC Irvine Previously Published Works

Title

Evidence-Based Consensus on the clinical application of Photobiomodulation

Permalink

https://escholarship.org/uc/item/68j64451

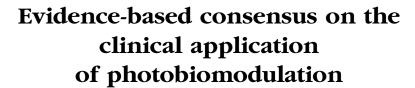
Authors

Maghfour, Jalal Mineroff, Jessica Ozog, David M et al.

Publication Date

2025-04-01

DOI


10.1016/j.jaad.2025.04.031

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

ORIGINAL ARTICLE

Jalal Maghfour, MD, ^a Jessica Mineroff, BS, ^b David M. Ozog, MD, ^{a,c,d} Jared Jagdeo, MS, MD, ^b Henry W. Lim, MD, ^{a,c,d} Indermeet Kohli, PhD, ^d Rox Anderson, MD, ^e Kristen M. Kelly, MD, ^f Andrew Mamalis, MD, ^g Gilly Munavalli, MD, ^h Ferraresi Cleber, PT PhD, ⁱ Daniel Siegel, ^b Ivayla Geneva, MD, ^a Robert Weiss, MD, ^{k,l} Akimich Morita, MD, ^m Anders Juanita, PhD, ⁿ Mitchel P. Goldman, MD, ^o Paraveen R. Arany, PhD, DDS, ^p David Sliney, PhD, ^q Omar A. Ibrahimi, MD, ^r Michael Chopp, PhD, ^s Samia Esmat, MD, ^t and Jan Tuner, MD^u

Background: There is a lack of evidence-based consensus to assist clinicians in using photobiomodulation (PBM).

Objective: To create a consensus on the safe and effective use of PBM.

Methods: A systematic literature review of Embase and MEDLINE was conducted in June 2022 to identify publications reporting research on PBM. An international multidisciplinary panel was convened to draft recommendations informed by the systematic search; they were refined through 2 rounds of Delphi survey, 2 consensus meetings, and iterative review by all panelists until unanimous consensus was achieved.

Results: A multidisciplinary panel of experts (n = 21) was assembled based on publication history. The key findings that informed the consensus developed by the expert panel were as follows: PBM is a safe treatment modality for adult patients and red light PBM does not induce DNA damage. PBM is an effective treatment option for peripheral neuropathy, androgenic alopecia, wound ulcers due to multiple etiologies, decubitus ulcers, pain attributed to diabetic foot ulcers, and acute radiation dermatitis.

Conclusion: The systematic literature search and structured Delphi consensus approach culminated in an evidence-based clinical practice guideline for safe and effective use of PBM in medical and aesthetic

From the Department of Dermatology, Henry Ford Health, Detroit, Michigana; Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York^b; Department of Dermatology, College of Human Medicine, Michigan State University, East Lansing, Michigan^c; The Henry W Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan^d; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts^e; Department of Dermatology, University of California-Irvine, Irvine, California[†]; Dermatology, Kaiser Permanent, Modesto, California⁹; Dermatology Laser & Vein Specialists of the Carolinas, Charlotte, North Carolinah; Department of Physical Therapy, Postgraduate Program in Physical Therapy, Federal University of Sao Carlos, Sao Paulo, Brazili; Department of Internal Medicine, Crouse Health Hospital, Syracruse, New York^j; Maryland Dermatology Laser, Skin and Vein Institute, Hunt Valley, Marylandk; Department of Dermatology, University of Maryland, College Park, Maryland¹; Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan^m; Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health, Bethesda, Marylandⁿ; Department of Dermatology, University of California San Diego, La Jolla, California°;

Department of Oral Biology, Bioengineering and Surgery, University at Buffalo School of Dental Medicine, Buffalo, New York^p; Department of Public Health, John Hopkins School of Medicine, Baltimore, Maryland^q; Medical Director, Connecticut Skin Institute, Stamford, Connecticut^r; Department of Neurology, Zolton J Kovacs Chair in Neuroscience Research, Henry Ford Health, Detroit, Michigan^s; Department of Dermatology, Cairo University, Cairo, Egypt^t; and Department of Dentistry, Karolinska Institutet, Stockholm, Sweden.^u

Funding sources: None.

Patient consent: Not applicable/Not needed as this study did not involve patients.

IRB approval status: Not applicable.

Accepted for publication April 14, 2025.

Correspondence to: David M. Ozog, MD, Department of Dermatology, Henry Ford Health, 3031 W. Grand Boulevard, Suite #800, Detroit, MI 48202. E-mail: dozog1@hfhs.org.

Published online May 18, 2025.

0190-9622/\$36.00

© 2025 by the American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://doi.org/10.1016/j.jaad.2025.04.031

applications. Future research will further bolster our understanding of this evolving noninvasive technique. (J Am Acad Dermatol https://doi.org/10.1016/j.jaad.2025.04.031.)

Key words: acute radiation dermatitis; androgenic alopecia; cognition; cytochrome c oxidase; decubitus ulcers; LLLT; low-level light therapy; musculoskeletal; near-infrared light; PBM; peripheral neuropathy; photobiomodulation; red light; sports performance; stroke; wound healing.

INTRODUCTION

Photobiomodulation (PBM), previously known as low-level laser light therapy (LLLT), represents a form of phototherapy that uses wavelengths in the red light (RL) (620-700 nm) and near-infrared (NIR) (700-1440 nm) spectrum. The stimulating effects of PBM were initially discovered following irradiation with a low-power ruby laser resulting in hair regrowth. Thereafter, there has been a substantial increase in the number of published re-

ports describing the clinical applications of PBM. ^{1,3} The therapeutic efficacy of PBM is primarily attributed to the modulation of mitochondrial cytochrome c oxidase (COX) activity.³ Although PBM has gained significant attention in the medical, athletic, and aesthetic communities, its efficacy on target tissue relies on optimization of several parameters including light source (eg, light emitting diode [LED], laser), wavelength, energy density, light structure, and duration of laser application. There is a marked heterogeneity in PBM protocols used in published reports making interstudy comparison and translation in clinical practice challenging. This lack of consensus on standardized treatment parameters for PBM limits its applicability in clinical practice and hinders standardized research. The objective of the study is to develop a structured consensus among interdisciplinary, recognized experts for definitions, clinical applicability, and safety of PBM.

METHODS

The study was deemed exempt from the institutional review board. The primary objective of the study is to develop a structured consensus among clinical experts regarding the use of visible RL and NIR in the management of various medical and skin conditions.

Consensus questions

This aim of the Delphi consensus is to meticulously address the ensuing key questions:

 What are the indications and contraindications for PBM?

CAPSULE SUMMARY

- Evidence-based consensus regarding photobiomodulation is sparse.
- Photobiomodulation is a safe treatment modality for adult patients, and it is an effective treatment option for peripheral neuropathy, androgenic alopecia, wound ulcers due to multiple etiologies, decubitus ulcers, pain attributed to diabetic foot ulcers, and acute radiation dermatitis.
- What is the main mechanism of action of RL-in duced and NIR-induced PBM?
- 3. What are the key parameters to report for PBM?
- 4. What are the important safety considerations for PBM?

Guideline development process

Study management.

The study was conceptualized and spearheaded by the Steering Committee (D.O., J.J., H.W.L., I.K., J.M., and J.M.). The database was managed through Google Forms, leveraging its integrated web development services for configuration and maintenance of the hosting environment. This web-based platform enabled the anonymous submission and subsequent rating of content by participants.

The steering committee conducted a systematic review of PBM. The comprehensive literature search was performed using OVID Medline, Embase, and Web of Science databases in June 2022 according to Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Criteria for inclusion included clinical (eg, observational and randomized controlled trials) studies investigating the utility of LLLT/PBM and/or RL therapy in the treatment of conditions across all specialties. Reports identified for inclusion were systematically evaluated to generate an item list, employing the Grading of Recommendations Assessment, Development and Evaluation approach for quality assessment. A multidisciplinary panel of expert stakeholders composed of medical and cosmetic dermatologists, neurologists, physical medicine and rehabilitation physicians, dentists, and pulmonologists which was assembled based on publication history (including prior publication of guidelines related to PBM or low-level laser/light therapy), clinical and scientific expertise, peer nomination, and recognition as expert leaders in related areas of research. To build this panel of experts to participate in the Delphi, all senior, first, and corresponding authors for each J AM ACAD DERMATOL Volume ■■, Number ■

Abbreviations used:

COX: cytochrome c oxidase light emitting diode LED:

LLLT: low-level laser light therapy

NIR: near-infrared

photobiomodulation PBM:

RL: red light

clinical article from the systematic review were identified. The number of PBM papers for each author was determined based on a PubMed search using the terms "(photobiomodulation) OR (low level laser therapy) AND (author)." Experts with the highest number of publications in the field were prioritized and subsequently invited to participate in the Delphi. Of the 21 panelists, 4 (19%) declared conflicts of interest. Of the 4, 2 reported receiving funds exclusively for research.

Through the systematic review, accompanied by panel deliberations, we generated an extensive list of items pertinent to PBM. This list underwent meticulous revision and refinement through 2 rounds of Delphi surveys and a pair of virtual consensus meetings, with all panel members actively participating as Delphi respondents.

Statistical analysis

During Round 1 and 2 of this e-Delphi study, participants were asked to independently rank statements using a 7-likert scale ("strongly agree," "agree," "neutral," "disagree," "strongly disagree," and "decline to answer as this is outside my area of expertise"). There was also an option for participants to type in their own responses as free text. Consensus was defined as ≥ 80% agreeing/strongly agreeing or \geq 80% disagreeing/strongly disagreeing.

Delphi questionnaires

This study, encompassing more than the administration of questionnaires, involved a comprehensive process including the development of questions and the selection of panel members. It consisted of 2 electronic questionnaire rounds.

Following a virtual gathering of all panelists in May 2023, the first round's statements were developed to establish consensus on key aspects such as physiology, parameters, safety, and efficacy across medical specialties represented in the literature. For each question, we provided corresponding article references, enabling participants to access full-text articles for in-depth review and informed evaluation. Those who selected "disagree," "strongly disagree," and "unable to answer" were prompted to provide a written explanation. Analysis of the responses and

feedback were taken into consideration to create the iterative questionnaire with the goal of reaching consensus opinions from experts. Participants were asked to complete a set of questions using a 7-likert scale and free text response options.

After Round 1, questionnaire results and data response rates for each statement were distributed to all participants. Participants were then asked to complete the next iteration of the Delphi. A second virtual meeting was held in September 2023 with the goal to refine initial statements from Round 1 that did not meet the threshold for consensus. Following a collective discussion among committee members, additional statements derived from the free text responses (based on panelists' expert input) to Round 1 were included in Round 2. The 7-likert scale and free text response options remained the same.

After Round 2, the results were distributed to the participants. A 14-day period was given to all Delphi participants to submit any comments before the next phase of the Delphi which included the final analysis and manuscript write-up.

RESULTS

The steering committee was comprised of 8 members. An initial review of the literature identified 526 PBM authors. Subsequent analysis narrowed this to 62 candidates for potential inclusion, which included 4 members of the steering committee. These individuals were extended invitations, with 21 accepting to contribute to the Delphi study. This cohort of contributors spanned a diverse spectrum of expertise, encompassing fields such as dermatology, dentistry, neuroscience, physical medicine and rehabilitation, and physical therapy, primarily hailing from the United States (76.2%). International expertise was also represented by specialists from Egypt, Japan, Brazil, and Sweden.

In addition, the 21 Delphi panelists constituted national and internationally recognized experts in medicine and dermatology with more than half (13 [61.9%]) being dermatologists. The remaining Delphi participants represented other specialties within medicine and health sciences including physical sciences (2 [9.5%]), dentistry (2 [9.5%]), internal medicine and geriatric care (2 [9.5%]), physical therapy (1 [4.76%]), anatomist and physiologist (1 [4.76%]), and neurology (1 [4.76%]).

Between May and September 2023, the 21 selected participants engaged in the initial Delphi survey, with a subsequent follow-up survey achieving a retention rate of 100%. These contributors boasted an average publication count of 207.4 (ranging from 30 to 512), including an average of 13.75 publications specifically focusing on PBM, 4 Maghfour et al J Am Acad Dermatol

with individual contributions varying from 1 to 58. Their scholarly impact, as measured by the h-index, averaged at 41.3, with a span from 8 to 137.

Round 1

Overall, 63 statements were presented in the first round, during which 2 additional items were proposed by the Delphi participants. There were 19 statements addressing PBM core principles and parameters. Statements regarding the following clinical safety and efficacy topics were included: pediatrics (1), musculoskeletal system (2), cardiovascular system (2), pulmonary system (2), central and peripheral nervous systems (5), cognitive and neurodegenerative system (2), wound healing (4), ulcers (3), maxillofacial and oral condition (5), medical dermatology (5), alopecia (2), autoimmune conditions (2), radiation dermatitis (1), cutaneous infections (2), and cosmetic dermatology (6).

Consensus was achieved for 26 (41.2%) statements. Of these, 14 (53.8%) statements related to the core principles and parameters of PBM.

Round 2

Following the steering committee discussion, 12 statements were removed from the Delphi. Of those, 7 were removed due to limited expertise by panelists. These statements pertained to the clinical application of PBM in various disciplines of medicine (eg, dermatology, cardiovascular system, pulmonary system, cognitive function, central nervous system, and peripheral nervous system).

Of the remaining statements, those with a Round 1 consensus agreement of less than 80% and 1 statement with a disagreement of 40% were included in Round 2 (n=24). Round 2 included 2 additional statements derived from the free text responses to Round 1 for a total of 26 statements. There were 6 statements addressing PBM core principles and parameters. Statements regarding the following clinical safety and efficacy topics were included: pediatrics (1), musculoskeletal (1), cardiovascular (1), pulmonary (1), cognitive and neurodegenerative (1), wound healing (1), maxillofacial and oral conditions (5), medical dermatology (4), alopecia (1), cutaneous infections (1), and cosmetic dermatology (3).

During Round 2, consensus was achieved for 12 (42.9%) statements. Of these, 6 (50%) statements related to the core principles and parameters of PBM. During the 14-day comment period, none of Delphi participants had additional comments.

CONSENSUS FOR USE OF PBM

A total of 38 statements regarding core principles and parameters, clinical safety, and efficacy of PBM reached consensus (Table I). Based on these expert

consensuses and level of evidence (Table II), the authors make the following statements and recommendations regarding PBM.

Definition and principles

Consensus 1: definition of photobio- modulation. Prior to its use in clinical practice, it remains essential for clinicians to understand the fundamental principles and basic definition of PBM. Despite the heterogeneity identified in published reports, our recommendation for PBM definition is as follows:

- PBM is defined as a form of light therapy that uses nonionizing forms of light sources including lasers, LEDs, and broadband light in the visible (400-700 nm) and NIR (700-1100 nm) spectrum.⁴
- 2. RL (600-700 nm) and NIR light (780-1100 nm) represent the most commonly used wavelengths in PBM.⁵

Consensus 2: mechanism of action of photobiomodulation.

- 1. The expert panel recognized that COX is the primary but not the sole biological photoacceptor and transducer of signals activated by light in the red and NIR regions of the spectrum.^{5,6} PBM improves the generation of adenosine triphosphate, a central cellular metabolite, through the activation of COX.⁵⁻⁷
- Clinicians must also recognize that PBM can result in either a stimulatory or inhibitory effect, which is primarily dependent on the parameters used.⁸⁻¹³ Lower fluences are generally associated with stimulation and higher fluences are associated with inhibition.⁸⁻¹³

Consensus 3: photobiomodulation parameters.

1. The results from this Delphi exercise further highlight the importance of measuring and reporting of PBM parameters. There was a significant heterogeneity in the reporting of PBM parameters in the included published reports. The following PBM parameters were deemed essential. These include fluence (J/ cm²), distance (from the light source to the target area), wavelength, irradiation (measured in minutes/seconds), beam area/spot size, treatment frequency, and treatment duration.³ In PBM, the treatment period describes the administration time (seconds to minutes to hours) and the frequency of treatments (eg, days to weeks). Treatment can be performed using either lasers or LEDs. Distance (mm) measures the space between the light source and the treatment target. As the light source moves further from

Table I. A total of 38 statements regarding core principle and parameters and clinical safety and efficacy of photobiomodulation reached consensus, defined as ≥80% agreeing/strongly agreeing or disagreeing/strongly disagreeing

Statement category	Statement
Core principles and parameters	Photobiomodulation is defined as a form of light therapy that uses nonionizing forms of light sources including lasers, LEDs, and broadband light in the visible (400-700 nm) and near-infrared (700-1100 nm) spectrum.
Core principles and parameters	Red light (600-700 nm) and near-infrared light (780-1100 nm) represent the most commonly used wavelengths in photobiomodulation.
Core principles and parameters	Cytochrome c oxidase is the primary but NOT sole biological photoacceptor and transducer of signals activated by light in the red and near-infrared regions of the spectrum.*
Core principles and parameters	The biological effects of photobiomodulation are primarily, but not soley, mediated by cytochrome c oxidase.*
Core principles and parameters	Photobiomodulation improves the generation of adenosine triphosphate, a central cellular metabolite, through the activation of cytochrome c oxidase.*
Core principles and parameters	Photobiomodulation can be stimulatory or inhibitory based on the parameters used, with lower fluences generally associated with stimulation and higher fluences associated with inhibition.
Core principles and parameters	Photobiomodulation therapy is generally safe to use when applied as directed by physician, provider, or home-based device instructions.
Core principles and parameters	Photobiomodulation, with red and near-infrared light, does not generate DNA damage associated with cancer and aging.
Core principles and parameters	Photobiomodulation dose is measured by fluence (J/cm ²), which represents irradiance (Watt/cm ²) and time (s).
Core principles and parameters	Fluence should be measured and reported in PBM clinical studies and practice.
Core principles and parameters	Distance, from the light source to the target area, should be measured and reported in PBM clinical studies and practice.
Core principles and parameters	Wavelength should be measured and recorded in PBM clinical studies and practice.
Core principles and parameters	Irradiation, measured in minutes/seconds, should be measured and reported in PBM clinical studies and practice.
Core principles and parameters	Beam area/spot size should be measured and reported in PBM clinical studies and practice.
Core principles and parameters	Side effects from photobiomodulation therapy are generally mild, limited to mild sensation of pain/discomfort, burning, blistering, edema, and erythema.
Core principles and parameters	Mild side effects from photobiomodulation therapy are generally temporary and self-resolving.
Core principles and parameters	Photobiomodulation therapy rarely causes severe side effects, such as second-degree and third-degree burns, scarring, sepsis, carcinogenesis, and death.
Core principles and parameters	Without ocular safety data, it is advisable to wear wavelength-specific eye protection for patients and providers when receiving or administering photobiomodulation treatment.*
Core principles and parameters	Data on the long-term effects of prolonged use of photobiomodulation are limited.*
Core principles and parameters	Photobiomodulation treatment frequency and treatment duration should be recorded in photobiomodulation clinical studies and practice.*
Clinical safety & efficacy: pediatrics	Short-term and long-term safety data on the use of photobiomodulation therapy in pediatric patients are lacking.*
Clinical safety & efficacy: musculoskeletal	Photobiomodulation therapy is generally a safe treatment for musculoskeletal conditions.

J Am Acad Dermatol

Table I. Cont'd

Statement category	Statement
Clinical safety & efficacy: musculoskeletal	Depending on the energy dose, photobiomodulation may have inhibitory or stimulatory effects on skeletal muscle performance and fatigue.
Clinical safety & efficacy: central & peripheral nervous systems	Photobiomodulation therapy is generally a safe treatment for peripheral nervous system conditions.
Clinical safety & efficacy: cognitive & neurodegenerative	Photobiomodulation can be used as an adjunct therapy in the treatment of peripheral neuropathy.
Clinical safety & efficacy: cognitive & neurodegenerative	Photobiomodulation therapy is generally a safe treatment for improving cognition.*
Clinical safety & efficacy: wound healing	Photobiomodulation can accelerate wound healing.
Clinical safety & efficacy: wound healing	Photobiomodulation can be considered as an adjunct therapy in the treatment of wounds due to multiple etiologies.
Clinical safety & efficacy: wound healing	Photobiomodulation therapy is an effective adjunct therapy in the management of patients with moderate to severe burns.*
Clinical safety & efficacy: ulcers	Photobiomodulation can be used as an adjunct therapy in the treatment of pain attributed to diabetic foot ulcers.
Clinical safety & efficacy: ulcers	Photobiomodulation can be considered as an adjunct therapy in the treatment of decubitus ulcers.
Clinical safety & efficacy: maxillofacial & oral conditions	Photobiomodulation therapy is generally well tolerated when used in the treatment of maxillofacial conditions.*
Clinical safety & efficacy: dermatology	Photobiomodulation therapy is generally safe when used appropriately for the treatment of dermatologic conditions.
Clinical safety & efficacy: dermatology	Due to lack of data, photobiomodulation therapy needs to be used with caution in patients with a known history of photosensitivities or photodermatoses.*
Clinical safety & efficacy: alopecia	Photobiomodulation can be effective at promoting hair regrowth in patients with androgenic alopecia.*
Clinical safety & efficacy: radiation dermatitis	Photobiomodulation can be used to reduce the incidence and severity of acute radiation dermatitis.
Clinical safety & efficacy: dermatology aesthetics	Photobiomodulation can improve aesthetic outcomes of scars.
Clinical safety & efficacy: dermatology aesthetics	Photobiomodulation can be used for skin rejuvenation.

LEDs, Light emitting diodes; PBM, photobiomodulation.

the target tissue, power density decreases. Systematic reporting of the aforementioned parameters may facilitate replication of successful treatments.

Consensus 4: photobiomodulation safety.

1. PBM is regarded as a safe treatment option when used as directed for the treatment of dermatologic conditions, maxillofacial conditions, peripheral nervous system conditions, musculoskeletal conditions, and for improving cognition. 14-96 Given that none of identified reports in the systemic literature search included pediatric (<18 years of age) patients, the safety of PBM in pediatric populations cannot be assessed and that PBM application should be restricted to adult individuals at this time.

2. Cyclobutene pyrimidine dimers or 6-4 photoproducts are biproducts historically associated with other forms of photodamage, including ultraviolet and blue light exposure. RL does not induce DNA damage in the form of cyclobutene pyrimidine dimers or 6-4 photoproducts in human dermal fibroblasts. 97 Even at fluences up to 1280 J/cm², RL has not been shown to induce DNA damage.⁹⁷ However, there was lack of data regarding ocular safety. As such, the steering committee recommends wearing wavelength-specific eye protection when receiving or administering PBM treatment. While blue light is known to cause photosensitivity and exacerbate certain photodermatoses, PBM induced by RL needs to be used with caution in patients with a known history of photosensitivities or photodermatoses.

^{*}Consensus was reached in Round 2.

Table II. Level of evidence for PBM as treatment for dermatologic conditions

Clinical application consensus statement	Level of evidence*
Musculoskeletal conditions	IV
Cognitive and neurodegenerative conditions	IB
Wound healing	IB
Burns	IB
Ulcers	
Diabetic foot ulcers	IA
Decubitus ulcers	IB
Androgenic alopecia	IA
Radiation dermatitis	IA
Dermatology aesthetics	
Scars	IB
Skin rejuvenation	IB

PBM. Photobiomodulation.

*Level of evidence: Level IA evidence includes evidence from meta-analysis of randomized controlled trials; level IB evidence includes evidence from at least 1 randomized controlled trial; level IIA evidence includes evidence from at least 1 controlled study without randomization; level IIB evidence includes evidence from at least 1 other type of experimental study; level III evidence includes evidence from nonexperimental descriptive studies, such as comparative studies, correlation studies, and case-control studies; and level IV evidence includes evidence from expert committee reports or opinions or clinical experience of respected authorities, or both.

Clinical application

Consensus 5: photobiomodulation side effects.

1. Side effects from PBM therapy are generally mild, limited to mild sensation of pain/discomfort, and erythema.²⁸⁻³² These side effects are generally temporary and self-resolving and may also be dependent on an individual skin phototype.²⁸⁻³² PBM therapy rarely causes severe side effects, such as second-degree and third-degree burns, scarring, sepsis, carcinogenesis, and death.

Consensus 6: clinical application of photobiomodulation for musculoskeletal conditions (LOE, IV).

1. Depending on the energy dose, PBM may have inhibitory or stimulatory effects on skeletal muscle performance and fatigue.⁹⁸ However, this consensus was based on low-quality published reports. Further high-quality studies are needed to accurately assess PBM impact on musculoskeletal conditions.

Consensus 7: clinical application of photobiomodulation for cognitive and neurodegenerative conditions (LOE, IB).

1. PBM can be used as an adjunct therapy in the treatment of peripheral neuropathy. 35,99 Delphi participants were also asked to evaluate PBM for cognition, including attentional performance, cognitive performance after brain injury, memory, and cognitive performance in depression, dementia, chronic migraines, Gulf War illness, Parkinson's disease, and Alzheimer's disease.83-96 No consensus was reached for these conditions, highlighting the need for additional research.

References were additionally provided for studies that investigated PBM for the treatment of peripheral nervous system conditions, including nerve injury, nerve postoperative recovery, drug-induced sensitization, overactive bladder, diabetic sensorimotor polyneuropathy, postherpetic neuralgia, baroreflex sensitivity, and poststroke complications including shoulder-hand syndrome, pain, and spastic muscle activity. 33-43,100 References were also provided for studies that investigated the treatment of central nervous system conditions, including spinal cord injury, acute ischemic stroke and stroke recovery, and cortical excitability. 101-107 PBM for peripheral neuropathy was the only nervous system condition for which consensus was achieved. Further clinical research is needed before experts can reasonably assess the efficacy for other central and peripheral nervous system conditions.

Consensus 8: clinical application of photobiomodulation for wound healing (LOE, IB).

- I. PBM can accelerate wound healing. 108-110
- II. PBM can be considered as an adjunct therapy in the treatment of wounds due to multiple etiologies. 111-127
- III. PBM therapy is an effective adjunct therapy in the management of patients with moderate to severe burns. 108-110

Consensus 9: clinical application of photobiomodulation for ulcers (LOE, IA & IB).

- I. PBM can be used as an adjunct therapy in the treatment of pain attributed to diabetic foot ulcers. 35,99,128-139
- II. PBM can be considered as an adjunct therapy in the treatment of decubitus ulcers. 131,135,140

Consensus 10: clinical application of photobiomodulation for alopecia (LOE, IA).

I. PBM can be effective at promoting hair regrowth in patients with androgenic alopecia. 1,141-155 The participants were asked to evaluate PBM for alopecia areata but there was insufficient evidence to reach consensus. 156,157

Consensus 11: clinical application of photobiomodulation for radiation dermatitis (LOE, 1A).

I. PBM can be used to reduce the incidence and severity of acute radiation dermatitis. 158-165

J AM ACAD DERMATOL

8 Maghfour et al

Consensus 12: clinical application of photobiomodulation for cosmetic dermatology (LOE, IB).

- I. PBM can improve aesthetic outcomes of scars.^{2,166-170}
- II. PBM can be used for skin rejuvenation. 171-179

DISCUSSION

Our study is pioneering in establishing consensus recommendations on the clinical application, efficacy, and safety of PBM. This initiative is timely and crucial, considering the swift proliferation of PBM across various domains. The iterative, interactive, and anonymous approach of the Delphi method was selected as the best method to collect and prioritize statements that reflect global expert opinion on PBM. In our study, consensus was reached for 38 statements. There was a strong unifying agreement (>90%) on the use of PBM as an overarching terminology encompassing LLLT. Nearly all statements within core principles and parameters section reached consensus after the first round. Based on the consensus of national and international experts, PBM is a safe treatment to use in clinical practice. Patients with darker skin phototype may be at higher risk for PBM side effects. As such, conservative parameters and dosing may mitigate the risks for these patients. Although our Delphi study focused on the spectrum of potential side effects, it is important to note that severe adverse events, such as second-degree and third-degree burns, scarring, sepsis, carcinogenesis, and death, have not been reported with PBM therapy. Our methodology did not include an option for "never occurring"; hence, the absence of such a response option should not be construed as an indication of the frequency or inevitability of these severe events.

Furthermore, the statements of greatest uncertainty were related to the assessment of clinical efficacy of PBM in the treatment of various medical conditions: 7 statements pertaining to dermatologic conditions were omitted from Round 2 due to insufficient evidence; due to the lack of representation of experts from cardiovascular, pulmonary, and neurologic systems, 7 statements from these disciplines were removed from Round 2. Nonetheless, the results of this Delphi process provide a structured framework to clinicians for the safe and effective use of PBM in medical and dermatologic settings.

LIMITATIONS

PBM is an evolving technology, which may result in substantial changes over time in how it is used, and consequently, in its safety and effectiveness. As

such, the current guidelines may need to be revised in the future. In addition, there was a lack of panelists' expertise in certain topics resulting in the removal of a selected number of statements.

CONCLUSION

PBM is a safe treatment modality for adult patients and RL PBM does not induce DNA damage. As there continues to be a shift toward the use of innovative and minimally invasive and individualized procedures, PBM will play an important role. Future research will bolster understanding of PBM optimized for clinical effectiveness while maintaining a high level of therapeutic safety.

Conflicts of interest

Dr Siegel serves as a member of the advisory scientific board of Omnilux. Dr Goldman is an investigator for Biofrontera and Accure. Dr Kelly was a formal primary investigator of Biophotas. Dr Arany serves as a consultant for Summus Medical Laser, founder of Directed Energy Therapeutics, and OptiMed Technologies Inc. The remaining authors have no relevant conflicts of interest to declare.

REFERENCES

- 1. Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2009;11(2):110-117. https://doi.org/10.1080/14764170902842531
- 2. Freitas CP, Melo C, Alexandrino AM, Noites A. Efficacy of lowlevel laser therapy on scar tissue. J Cosmet Laser Ther. 2013; 15(3):171-176. https://doi.org/10.3109/14764172.2013.769272
- 3. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quan Electron. 2016;22(3):7000417. https://doi.org/10.1109/jstqe. 2016.2561201
- 4. Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33(4):183-184. https://doi.org/10.1089/pho.2015.9848
- 5. Dompe C, Moncrieff L, Matys J, et al. Photobiomodulationunderlying mechanism and clinical applications. J Clin Med. 2020;9(6):1724. https://doi.org/10.3390/jcm9061724
- 6. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B. 2005;81(2):98-106. https://doi.org/10. 1016/j.jphotobiol.2005.07.002
- 7. Lima PLV, Pereira CV, Nissanka N, et al. Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J Photochem Photobiol B. 2019;194:71-75. https://doi.org/10.1016/j.jphotobiol.2019.03.015
- 8. Austin E, Geisler AN, Nguyen J, et al. Visible light. Part I: properties and cutaneous effects of visible light. J Am Acad Dermatol. 2021;84(5):1219-1231. https://doi.org/10.1016/j. jaad.2021.02.048
- 9. Lev-Tov H, Mamalis A, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using red light-emitting diodes. Dermatol Surg. 2013;39(8):1167-1170. https://doi.org/ 10.1111/dsu.12212
- 10. Lev-Tov H, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using low-level infrared light-emitting diodes. Dermatol Surg. 2013;39(3 Pt 1):422-425. https://doi.org/10.1111/dsu.12087

J AM ACAD DERMATOL Volume ■■, Number ■

- 11. Mamalis A, Jagdeo J. Light-emitting diode-generated red light inhibits keloid fibroblast proliferation. Dermatol Surg. 2015;41(1):35-39. https://doi.org/10.1097/01.Dss.0000452650. 06765.51
- 12. Mamalis A, Garcha M, Jagdeo J. Light emitting diodegenerated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers Surg Med. 2015;47(2):210-215. https://doi.org/10.1002/lsm.22293
- 13. Jagdeo J, Isseroff R, Mamalis A, Siegel D, Lev-Tov H. Methods for in vitro inhibition of fibroblast proliferation (U.S. Patent No. 61/777,854). U.S. Patent and Trademark Office, 2014. Accessed October 14, 2025. https://patents.google.com/ patent/US20140277293A1/en
- 14. Naghdi S, Ansari NN, Fathali M, Bartley J, Varedi M, Honarpishe R. A pilot study into the effect of low-level laser therapy in patients with chronic rhinosinusitis. Physiother Theory Pract. 2013;29(8):596-603. https://doi.org/10.3109/ 09593985.2013.775204
- 15. Nahas AZ, Samara SA, Rastegar-Lari TA. Decrowding of lower anterior segment with and without photobiomodulation: a single center, randomized clinical trial. Lasers Med Sci. 2017; 32(1):129-135. https://doi.org/10.1007/s10103-016-2094-5
- 16. Miranda DTH, Hoeppner MG, Garbelini CCD, et al. LED photobiomodulation effect on the bleaching-induced sensitivity with hydrogen peroxide 35%-a controlled randomized clinical trial. Clin Oral Investig. 2022;26(5):3853-3864. https:// doi.org/10.1007/s00784-021-04352-2
- 17. Nemeth L, Groselj M, Golez A, Arhar A, Frangez I, Cankar K. The impact of photobiomodulation of major salivary glands on caries risk. Lasers Med Sci. 2020;35(1):193-203. https://doi. org/10.1007/s10103-019-02845-x
- 18. Bitencourt GB, Motta LJ, Teixeira da Silva DF, et al. Evaluation of the preventive effect of photobiomodulation on orofacial discomfort in dental procedures: a randomized-controlled, crossover study and clinical trial. Photobiomodul Photomed Laser Surg. 2021;39(1):38-45. https://doi.org/10.1089/photob. 2020.4875
- 19. Ferreira LA, de Oliveira RG, Guimarães JP, Carvalho AC, De Paula MV. Laser acupuncture in patients with temporomandibular dysfunction: a randomized controlled trial. Lasers Med Sci. 2013;28(6):1549-1558. https://doi.org/10.1007/s10103-013-1273-x
- 20. Ekizer A, Türker G, Uysal T, Güray E, Taşdemir Z. Light emitting diode mediated photobiomodulation therapy improves orthodontic tooth movement and miniscrew stability: a randomized controlled clinical trial. Lasers Surg Med. 2016; 48(10):936-943. https://doi.org/10.1002/lsm.22516
- 21. Angiero F, Ugolini A, Cattoni F, et al. Evaluation of bradykinin, VEGF, and EGF biomarkers in gingival crevicular fluid and comparison of PhotoBioModulation with conventional techniques in periodontitis: a split-mouth randomized clinical trial. Lasers Med Sci. 2020;35(4):965-970. https://doi.org/10. 1007/s10103-019-02919-w
- 22. Al-Shafi S, Pandis N, Darendeliler MA, Papadopoulou AK. Effect of light-emitting diode-mediated photobiomodulation on extraction space closure in adolescents and young adults: a split-mouth, randomized controlled trial. Am J Orthod Dentofacial Orthop. 2021;160(1):19-28. https://doi.org/10. 1016/j.ajodo.2020.12.021
- 23. Kahraman SA, Cetiner S, Strauss RA. The effects of transcutaneous and intraoral low-level laser therapy after extraction of lower third molars: a randomized single blind, placebo controlled dual-center study. Photomed Laser Surg. 2017;35(8):401-407. https://doi.org/10.1089/pho.2016.4252

- 24. Herpich CM, Leal-Junior ECP, Politti F, et al. Intraoral photobiomodulation diminishes pain and improves functioning in women with temporomandibular disorder: a randomized, sham-controlled, double-blind clinical trial: intraoral photobiomodulation diminishes pain in women with temporomandibular disorder. Lasers Med Sci. 2020;35(2):439-445. https://doi.org/10.1007/s10103-019-02841-1
- 25. Kim WT, Bayome M, Park JB, Park JH, Baek SH, Kook YA. Effect of frequent laser irradiation on orthodontic pain. A singleblind randomized clinical trial. Angle Orthod. 2013;83(4):611-616. https://doi.org/10.2319/082012-665.1
- 26. Kan B, Altay MA, Taşar F, Akova M. Low-level laser therapy supported teeth extractions of two patients receiving IV zolendronate. Lasers Med Sci. 2011;26(5):569-575. https://doi. org/10.1007/s10103-010-0816-7
- 27. Domínguez Camacho A, Velásquez SA, Benjumea Marulanda NJ, Moreno M. Photobiomodulation as oedema adjuvant in post-orthognathic surgery patients: a randomized clinical trial. Int Orthod. 2020;18(1):69-78. https://doi.org/ 10.1016/j.ortho.2019.09.004
- 28. Falcone D, Uzunbajakava NE, van Abeelen F, van Erp PEJ, van de Kerkhof PCM. Effects of red light on inflammation and skin barrier recovery following acute perturbation. Pilot study results in healthy human subjects. Photodermatol Photoimmunol Photomed. 2019;35(4):275-276. https://doi.org/10. 1111/phpp.12444
- 29. Gelfand JA, Nazarian RM, Kashiwagi S, et al. A pilot clinical trial of a near-infrared laser vaccine adjuvant: safety, tolerability, and cutaneous immune cell trafficking. FASEB J. 2019; 33(2):3074-3081. https://doi.org/10.1096/fj.201801095R
- 30. Joensen J, Demmink JH, Johnson MI, Iversen VV, Lopes-Martins R, Bjordal JM. The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin. Photomed Laser Surg. 2011;29(3):145-153. https://doi.org/10. 1089/pho.2010.2793
- 31. Jagdeo J, Nguyen JK, Ho D, et al. Safety of light emitting diode-red light on human skin: two randomized controlled trials. J Biophotonics. 2020;13(3):e201960014. https://doi.org/ 10.1002/jbio.201960014
- 32. Ho D, Kraeva E, Wun T, Isseroff RR, Jagdeo J. A single-blind, dose escalation, phase I study of high-fluence light-emitting diode-red light (LED-RL) on human skin: study protocol for a randomized controlled trial. Trials. 2016;17:385. https://doi. org/10.1186/s13063-016-1518-7
- 33. Milan-Mattos JC, de Oliveira Francisco C, Ferroli-Fabrício AM, et al. Acute effect of photobiomodulation using lightemitting diodes (LEDs) on baroreflex sensitivity during and after constant loading exercise in patients with type 2 diabetes mellitus. Lasers Med Sci. 2020;35(2):329-336. https://doi.org/10.1007/s10103-019-02815-3
- 34. Mukhtar R, Fazal MU, Saleem M, Saleem S. Role of low-level laser therapy in post-herpetic neuralgia: a pilot study. Lasers Med Sci. 2020;35(8):1759-1764. https://doi.org/10.1007/s1010 3-020-02969-5
- 35. Zinman LH, Ngo M, Ng ET, Nwe KT, Gogov S, Bril V. Low-intensity laser therapy for painful symptoms of diabetic sensorimotor polyneuropathy: a controlled trial. Diabetes Care. 2004;27(4):921-924. https://doi.org/10.2337/diacare.27.4.921
- 36. Hwang WY, Kim YB, Lee SR, Suh DH, Kim K, No JH. Efficacy and safety of skin-adhesive low-level light therapy for overactive bladder: a Phase III study. Int Urogynecol J. 2022;33(12):3573-3580. https://doi.org/10.1007/s00192-022-05153-1
- 37. Kent AL, Abdel-Latif ME, Cochrane T, et al. A pilot randomised clinical trial of 670 nm red light for reducing retinopathy of

- prematurity. *Pediatr Res.* 2020;87(1):131-136. https://doi.org/10.1038/s41390-019-0520-7
- Lang-Illievich K, Winter R, Rumpold-Seitlinger G, et al. The
 effect of low-level light therapy on capsaicin-induced peripheral and central sensitization in healthy volunteers: a doubleblinded, randomized, sham-controlled trial. *Pain Ther.* 2020;
 9(2):717-726. https://doi.org/10.1007/s40122-020-00205-0
- Jan F, Naeem A, Malik AN, Amjad I, Malik T. Comparison of low level laser therapy and interferential current on post stroke shoulder pain. J Pak Med Assoc. 2017;67(5):788-789.
- das Neves MF, Dos Reis MC, de Andrade EA, et al. Effects of lowlevel laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. *Lasers Med Sci.* 2016;31(7): 1293-1300. https://doi.org/10.1007/s10103-016-1968-x
- Karabegović A, Kapidzić-Duraković S, Ljuca F. Laser therapy of painful shoulder and shoulder-hand syndrome in treatment of patients after the stroke. Bosn J Basic Med Sci. 2009; 9(1):59-65. https://doi.org/10.17305/bjbms.2009.2858
- Mohajerani SH, Tabeie F, Bemanali M, Tabrizi R. Effect of low-level laser and light-emitting diode on inferior alveolar nerve recovery after sagittal split osteotomy of the mandible: a randomized clinical trial study. *J Craniofac Surg.* 2017;28(4): e408-e411. https://doi.org/10.1097/scs.00000000000002929
- Rochkind S, Drory V, Alon M, Nissan M, Ouaknine GE. Laser phototherapy (780 nm), a new modality in treatment of longterm incomplete peripheral nerve injury: a randomized double-blind placebo-controlled study. *Photomed Laser Surg*. 2007;25(5):436-442. https://doi.org/10.1089/pho.2007.2093
- Chao LL. Improvements in Gulf war illness symptoms after near-infrared transcranial and intranasal photobiomodulation: two case reports. *Mil Med.* 2019;184(9-10):e568-e574. https://doi.org/10.1093/milmed/usz037
- Gür A, Karakoc M, Nas K, Cevik R, Sarac J, Ataoglu S. Effects of low power laser and low dose amitriptyline therapy on clinical symptoms and quality of life in fibromyalgia: a singleblind, placebo-controlled trial. *Rheumatol Int*. 2002;22(5):188-193. https://doi.org/10.1007/s00296-002-0221-z
- Lazovic M, Ilic-Stojanovic O, Kocic M, Zivkovic V, Hrkovic M, Radosavljevic N. Placebo-controlled investigation of low-level laser therapy to treat carpal tunnel syndrome. *Photomed Laser Surg.* 2014;32(6):336-344. https://doi.org/10.1089/pho. 2013.3563
- Chen Y, Zhao CQ, Ye G, Liu CD, Xu WD. Low-power laser therapy for carpal tunnel syndrome: effective optical power. *Neural Regen Res.* 2016;11(7):1180-1184. https://doi.org/10. 4103/1673-5374.187063
- Baek WY, Byun IH, Yun IS, et al. The effect of light-emitting diode (590/830 nm)-based low-level laser therapy on posttraumatic edema of facial bone fracture patients. *J Cranio*maxillofac Surg. 2017;45(11):1875-1877. https://doi.org/10. 1016/j.jcms.2017.08.027
- 49. da Silva MM, Albertini R, de Tarso Camillo de Carvalho P, et al. Randomized, blinded, controlled trial on effectiveness of photobiomodulation therapy and exercise training in the fibromyalgia treatment. *Lasers Med Sci.* 2018;33(2):343-351. https://doi.org/10.1007/s10103-017-2388-2
- Altindiş T, Güngörmüş M. Thermographic evaluation of occlusal splint and low level laser therapy in myofascial pain syndrome. *Complement Ther Med.* 2019;44:277-281. https://doi.org/10.1016/j.ctim.2019.05.006
- Güner A, Altan L, Kasapoğlu Aksoy M. The effectiveness of the low-power laser and kinesiotaping in the treatment of carpal tunnel syndrome, a pilot study. *Rheumatol Int*. 2018; 38(5):895-904. https://doi.org/10.1007/s00296-018-4020-6

- Gobbi A, de Carvalho G, Sapalo AT, de Jesus Guirro RR. Acute application of photobiomodulation does not bring important gains for the muscular performance and functionality of diabetic individuals. *Lasers Med Sci.* 2021;36(5):995-1002. https://doi.org/10.1007/s10103-020-03135-7
- 53. Malta Ede S, De Poli RA, Brisola GM, et al. Acute LED irradiation does not change the anaerobic capacity and time to exhaustion during a high-intensity running effort: a double-blind, crossover, and placebo-controlled study: effects of LED irradiation on anaerobic capacity and performance in running. Lasers Med Sci. 2016;31(7):1473-1480. https://doi.org/10.1007/s10103-016-2011-y
- 54. Pinto HD, Vanin AA, Miranda EF, et al. Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. J Strength Cond Res. 2016;30(12):3329-3338. https://doi.org/ 10.1519/jsc.00000000000001439
- Rossato M, Dellagrana RA, Sakugawa RL, Baroni BM, Diefenthaeler F. Dose-response effect of photobiomodulation therapy on muscle performance and fatigue during a multiple-set knee extension exercise: a randomized, crossover, double-blind placebo-controlled trial. *Photobiomodul Photomed Laser Surg.* 2020;38(12):758-765. https://doi.org/10.1089/photob.2020.4820
- Palma H, Pinfildi CE, Lambertucci RH, Franco ESB, Vaz VDM, Peccin S. Photobiomodulation before eccentric fatigue protocol in the control of pain and muscle damage markers: a double-blind, randomized controlled study. *Photobiomodul Photomed Laser Surg.* 2020;38(12):780-788. https://doi.org/10. 1089/photob.2020.4866
- 57. Vassão PG, Baldini GS, Vieira K, et al. Acute photobiomodulation effects through a cluster device on skeletal muscle fatigue of biceps brachii in young and healthy males: a randomized double-blind session. *Photobiomodul Photomed Laser Surg.* 2020;38(12):773-779. https://doi.org/10.1089/photob.2019.4786
- dos Reis MC, de Andrade EA, Borges AC, et al. Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. *Lasers Med Sci.* 2015;30(3):1089-1096. https://doi.org/10.1007/s10103-014-1702-5
- Kakihata CM, Malanotte JA, Higa JY, Errero TK, Balbo SL, Bertolini GR. Influence of low-level laser therapy on vertical jump in sedentary individuals. *Einstein (Sao Paulo)*. 2015; 13(1):41-46. https://doi.org/10.1590/s1679-45082015ao3243
- Hemmings TJ, Kendall KL, Dobson JL. Identifying dosage effect of light-emitting diode therapy on muscular fatigue in quadriceps. J Strength Cond Res. 2017;31(2):395-402. https:// doi.org/10.1519/jsc.0000000000001523
- Leal Junior EC, Lopes-Martins RA, Rossi RP, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. *Lasers Surg Med.* 2009;41(8):572-577. https://doi.org/10.1002/lsm.20810
- 62. Abreu JSS, Dos Santos GV, Fonsati L, Marques NR, Ferraresi C. Time-response of photobiomodulation therapy by light-emitting diodes on muscle torque and fatigue resistance in young men: randomized, double-blind, crossover and placebo-controlled study. *Photobiomodul Photomed Laser Surg.* 2020;38(12):750-757. https://doi.org/10.1089/photob. 2020.4813
- Ferraresi C, Beltrame T, Fabrizzi F, et al. Muscular preconditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebocontrolled trial with a single elite runner. *Physiother Theory*

- Pract. 2015;31(5):354-361. https://doi.org/10.3109/09593985. 2014.1003118
- 64. Ferraresi C, Dos Santos RV, Marques G, et al. Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers Med Sci. 2015;30(4):1281-1287. https://doi. org/10.1007/s10103-015-1728-3
- 65. Vassão PG, de Souza MC, Silva BA, et al. Photobiomodulation via a cluster device associated with a physical exercise program in the level of pain and muscle strength in middle-aged and older women with knee osteoarthritis: a randomized placebo-controlled trial. Lasers Med Sci. 2020; 35(1):139-148. https://doi.org/10.1007/s10103-019-02807-3
- 66. Hegedus B, Viharos L, Gervain M, Gálfi M. The effect of lowlevel laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg. 2009;27(4): 577-584. https://doi.org/10.1089/pho.2008.2297
- 67. Baltzer AW, Ostapczuk MS, Stosch D. Positive effects of low level laser therapy (LLLT) on Bouchard's and Heberden's osteoarthritis. Lasers Surg Med. 2016;48(5):498-504. https:// doi.org/10.1002/lsm.22480
- 68. S GN, Kamal W, George J, Manssor E. Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med Sci. 2017;32(2):297-303. https://doi.org/10. 1007/s10103-016-2114-5
- 69. Alghadir A, Omar MT, Al-Askar AB, Al-Muteri NK. Effect of low-level laser therapy in patients with chronic knee osteoarthritis: a single-blinded randomized clinical study. Lasers Med Sci. 2014;29(2):749-755. https://doi.org/10.1007/s10103-013-1393-3
- 70. Taradaj J, Rajfur K, Rajfur J, et al. Effect of laser treatment on postural control parameters in patients with chronic nonspecific low back pain: a randomized placebo-controlled trial. Braz J Med Biol Res. 2019;52(12):e8474. https://doi.org/10. 1590/1414-431x20198474
- 71. Ingenito T. Low level light therapy and tattoos: a case report. J Bodyw Mov Ther. 2016;20(4):748-750. https://doi.org/10. 1016/j.jbmt.2016.04.016
- 72. Hsieh RL, Lee WC. Short-term therapeutic effects of 890nanometer light therapy for chronic low back pain: a doubleblind randomized placebo-controlled study. Lasers Med Sci. 2014;29(2):671-679. https://doi.org/10.1007/s10103-013-1378-2
- 73. Konstantinovic LM, Cutovic MR, Milovanovic AN, et al. Lowlevel laser therapy for acute neck pain with radiculopathy: a double-blind placebo-controlled randomized study. Pain Med. 2010;11(8):1169-1178. https://doi.org/10.1111/j.1526-4637.2010.00907.x
- 74. Konstantinovic LM, Kanjuh ZM, Milovanovic AN, et al. Acute low back pain with radiculopathy: a double-blind, randomized, placebo-controlled study. Photomed Laser Surg. 2010; 28(4):553-560. https://doi.org/10.1089/pho.2009.2576
- 75. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain. 2006;124(1-2):201-210. https://doi.org/10.1016/j.pain.2006.05.018
- 76. Ulusoy A, Cerrahoglu L, Orguc S. Magnetic resonance imaging and clinical outcomes of laser therapy, ultrasound therapy, and extracorporeal shock wave therapy for treatment of plantar fasciitis: a randomized controlled trial. J Foot Ankle Surg. 2017;56(4):762-767. https://doi.org/10.1053/j.jfas. 2017.02.013
- 77. Haslerud S, Naterstad IF, Bjordal JM, et al. Achilles tendon penetration for continuous 810 nm and superpulsed 904 nm lasers before and after ice application: an in situ study on

- healthy young adults. Photomed Laser Surg. 2017;35(10):567-575. https://doi.org/10.1089/pho.2017.4269
- 78. Chang CC, Ku CH, Hsu WC, Hu YA, Shyu JF, Chang ST. Five-day, low-level laser therapy for sports-related lower extremity periostitis in adult men: a randomized, controlled trial. Lasers Med Sci. 2014;29(4):1485-1494. https://doi.org/10.1007/s10103-
- 79. de Bie RA, de Vet HC, Lenssen TF, van den Wildenberg FA, Kootstra G, Knipschild PG. Low-level laser therapy in ankle sprains: a randomized clinical trial. Arch Phys Med Rehabil. 1998;79(11): 1415-1420. https://doi.org/10.1016/s0003-9993(98)90237-4
- 80. Martin PI, Chao L, Krengel MH, et al. Transcranial photobiomodulation to improve cognition in Gulf war illness. Front Neurol. 2020;11:574386. https://doi.org/10.3389/fneur.2020. 574386
- 81. Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013;230:13-23. https://doi. org/10.1016/j.neuroscience.2012.11.016
- 82. Chan AS, Lee TL, Yeung MK, Hamblin MR. Photobiomodulation improves the frontal cognitive function of older adults. Int J Geriatr Psychiatry. 2019;34(2):369-377. https://doi.org/10. 1002/gps.5039
- 83. Loeb LM, Amorim RP, Mazzacoratti M, Scorza FA, Peres MFP. Botulinum toxin A (BT-A) versus low-level laser therapy (LLLT) in chronic migraine treatment: a comparison. Arg Neuropsiquiatr. 2018;76(10):663-667. https://doi.org/10.1590/0004-282x20180109
- 84. Santos L, Olmo-Aguado SD, Valenzuela PL, et al. Photobiomodulation in Parkinson's disease: a randomized controlled trial. Brain Stimul. 2019;12(3):810-812. https://doi. org/10.1016/j.brs.2019.02.009
- 85. Bullock-Saxton J, Lehn A, Laakso EL. Exploring the effect of combined transcranial and intra-oral photobiomodulation therapy over a four-week period on physical and cognitive outcome measures for people with Parkinson's disease: a randomized double-blind placebo-controlled pilot study. J Alzheimers Dis. 2021;83(4):1499-1512. https://doi.org/10. 3233/jad-210170
- 86. Liebert A, Bicknell B, Laakso EL, et al. Improvements in clinical signs of Parkinson's disease using photobiomodulation: a prospective proof-of-concept study. BMC Neurol. 2021;21(1): 256. https://doi.org/10.1186/s12883-021-02248-y
- 87. Baik JS, Lee TY, Kim NG, et al. Effects of photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: a pilot uncontrolled trial. J Alzheimers Dis. 2021;83(4):1513-1519. https://doi.org/10.3233/jad-210386
- 88. Nowak L, Davis J. Qualitative analysis of therapeutic light effects on global function in Alzheimer's disease. West J Nurs Res. 2011; 33(7):933-952. https://doi.org/10.1177/0193945910386248
- 89. Nizamutdinov D, Qi X, Berman MH, et al. Transcranial near infrared light stimulations improve cognition in patients with dementia. Aging Dis. 2021;12(4):954-963. https://doi.org/10. 14336/ad.2021.0229
- 90. Spera V, Sitnikova T, Ward MJ, et al. Pilot study on dosedependent effects of transcranial photobiomodulation on brain electrical oscillations: a potential therapeutic target in Alzheimer's disease. J Alzheimers Dis. 2021;83(4):1481-1498. https://doi.org/10.3233/jad-210058
- 91. Chao LL. Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial. Photobiomodul Photomed Laser Surg. 2019; 37(3):133-141. https://doi.org/10.1089/photob.2018.4555

- Berman MH, Halper JP, Nichols TW, Jarrett H, Lundy A, Huang JH. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. *J Neurol Neurosci*. 2017;8(1):176. https://doi.org/10.21767/2171-6625.1000176
- 93. Kerppers FK, Dos Santos K, Cordeiro MER, et al. Study of transcranial photobiomodulation at 945-nm wavelength: anxiety and depression. *Lasers Med Sci.* 2020;35(9):1945-1954. https://doi.org/10.1007/s10103-020-02983-7
- Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. *Photomed Laser Surg.* 2011;29(5):351-358. https://doi.org/10.1089/pho.2010.2814
- Carneiro AMC, Poiani GC, Zaninnoto AL, et al. Transcranial photobiomodulation therapy in the cognitive rehabilitation of patients with cranioencephalic trauma. *Photobiomodul Photomed Laser Surg.* 2019;37(10):657-666. https://doi.org/10. 1089/photob.2019.4683
- Jahan A, Nazari MA, Mahmoudi J, Salehpour F, Salimi MM. Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults. *Lasers Med Sci.* 2019;34(6): 1193-1200. https://doi.org/10.1007/s10103-018-02710-3
- Wang JY, Austin E, Jagdeo J. Visible red light does not induce DNA damage in human dermal fibroblasts. *J Biophotonics*. 2022; 15(11):e202200023. https://doi.org/10.1002/jbio.202200023
- Ferraresi C, Huang YY, Hamblin MR. Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics. 2016;9(11-12):1273-1299. https://doi.org/10. 1002/jbio.201600176
- Vitoriano NAM, Mont'Alverne DGB, Martins MIS, et al. Comparative study on laser and LED influence on tissue repair and improvement of neuropathic symptoms during the treatment of diabetic ulcers. *Lasers Med Sci.* 2019;34(7): 1365-1371. https://doi.org/10.1007/s10103-019-02724-5
- 100. das Neves MF, Aleixo DC, Mendes IS, et al. Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): a double-blinded placebo-controlled clinical trial. *Lasers Med Sci.* 2020;35(7):1459-1467. https://doi.org/10.1007/s10103-019-02920-3
- 101. Zivin JA, Sehra R, Shoshoo A, et al. NeuroThera® Efficacy and Safety Trial-3 (NEST-3): a double-blind, randomized, shamcontrolled, parallel group, multicenter, pivotal study to assess the safety and efficacy of transcranial laser therapy with the NeuroThera® laser system for the treatment of acute ischemic stroke within 24 h of stroke onset. *Int J Stroke*. 2014;9(7):950-955. https://doi.org/10.1111/j.1747-4949.2012. 00896.x
- 102. Lampl Y, Zivin JA, Fisher M, et al. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke. 2007;38(6):1843-1849. https://doi.org/10.1161/strokeaha.106. 478230
- Zivin JA, Albers GW, Bornstein N, et al. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke. 2009;40(4):1359-1364. https://doi.org/10.1161/strokea ha.109.547547
- 104. Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med. 2013;45(10):648-653. https://doi.org/10.1002/lsm.22190

- 105. Boonswang NA, Chicchi M, Lukachek A, Curtiss D. A new treatment protocol using photobiomodulation and muscle/ bone/joint recovery techniques having a dramatic effect on a stroke patient's recovery: a new weapon for clinicians. *BMJ Case Rep.* 2012;2012:bcr0820114689. https://doi.org/10.1136/ bcr.08.2011.4689
- 106. Wu X, Dmitriev AE, Cardoso MJ, et al. 810 nm wavelength light: an effective therapy for transected or contused rat spinal cord. Lasers Surg Med. 2009;41(1):36-41. https://doi. org/10.1002/lsm.20729
- 107. da Silva FC, Gomes AO, da Costa Palácio PR, et al. Photobiomodulation improves motor response in patients with spinal cord injury submitted to electromyographic evaluation: randomized clinical trial. *Lasers Med Sci.* 2018;33(4):883-890. https://doi.org/10.1007/s10103-018-2447-3
- 108. Vaghardoost R, Momeni M, Kazemikhoo N, et al. Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers Med Sci. 2018;33(3):603-607. https://doi.org/10.1007/s10103-017-2430-4
- 109. de Oliveira RA, Boson LLB, Portela SMM, Filho A, de Oliveira Santiago D. Low-intensity LED therapy (658 nm) on burn healing: a series of cases. *Lasers Med Sci.* 2018;33(4):729-735. https://doi.org/10.1007/s10103-017-2399-z
- 110. Dahmardehei M, Kazemikhoo N, Vaghardoost R, et al. Effects of low level laser therapy on the prognosis of split-thickness skin graft in type 3 burn of diabetic patients: a case series. *Lasers Med Sci.* 2016;31(3):497-502. https://doi.org/10.1007/ s10103-016-1896-9
- 111. Tchanque-Fossuo CN, Ho D, Dahle SE, Koo E, Isseroff RR, Jagdeo J. Low-level light therapy for treatment of diabetic foot ulcer: a review of clinical experiences. *J Drugs Dermatol*. 2016;15(7):843-848.
- 112. Tchanque-Fossuo CN, Ho D, Dahle SE, et al. A systematic review of low-level light therapy for treatment of diabetic foot ulcer. *Wound Repair Regen*. 2016;24(2):418-426. https://doi.org/10.1111/wrr.12399
- 113. Fernandes GA, Lima AC, Gonzaga IC, de Barros Araújo R Jr, de Oliveira RA, Nicolau RA. Low-intensity laser (660 nm) on sternotomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. *Lasers Med Sci.* 2016; 31(9):1907-1913. https://doi.org/10.1007/s10103-016-2069-6
- 114. Carboni RM, Gonçalves MLL, Tacla EM, et al. The effects of photobiomodulation using LED on the repair process of skin graft donor sites. *Lasers Med Sci.* 2022;37(3):1881-1890. https://doi.org/10.1007/s10103-021-03447-2
- 115. Minicucci EM, Barraviera SR, Miot H, Almeida-Lopes L. Low-level laser therapy for the treatment of epidermolysis bullosa: a case report. *J Cosmet Laser Ther.* 2010;12(4):203-205. https://doi.org/10.3109/14764172.2010.502460
- 116. Yilmaz HG, Kusakci-Seker B, Bayindir H, Tözüm TF. Low-level laser therapy in the treatment of mucous membrane pemphigoid: a promising procedure. *J Periodontol*. 2010; 81(8):1226-1230. https://doi.org/10.1902/jop.2010.100095
- 117. Le Duff F, Fontas E, Guardoli D, Lacour JP, Passeron T. HeaLED: assessment of skin healing under light-emitting diode (LED) exposure-A randomized controlled study versus placebo. *Lasers Surg Med.* 2022;54(3):342-347. https://doi.org/10.1002/lsm.23480
- 118. Nagieb CS, Harhash TA, Fayed HL, Ali S. Evaluation of diode laser versus topical corticosteroid in management of Behcet's disease-associated oral ulcers: a randomized clinical trial. Clin Oral Investig. 2022;26(1):697-704. https://doi.org/10.1007/ s00784-021-04047-8

- 119. Dixit S, Maiya AG, Umakanth S, Shastry BA. Closure of nonhealing chronic ulcer in Klippel-Trenaunay syndrome using low-level laser therapy. BMJ Case Rep. 2012;2012: bcr2012006226. https://doi.org/10.1136/bcr-2012-006226
- 120. Barreto JG, Salgado CG. Clinic-epidemiological evaluation of ulcers in patients with leprosy sequelae and the effect of low level laser therapy on wound healing: a randomized clinical trial. BMC Infect Dis. 2010;10:237. https://doi.org/10.1186/ 1471-2334-10-237
- 121. de Alencar Fonseca Santos J, Campelo MBD, de Oliveira RA, Nicolau RA, Rezende VEA, Arisawa EÂL. Effects of low-power light therapy on the tissue repair process of chronic wounds in diabetic feet. Photomed Laser Surg. 2018;36(6):298-304. https://doi.org/10.1089/pho.2018.4455
- 122. Frangez I, Cankar K, Ban Frangez H, Smrke DM. The effect of LED on blood microcirculation during chronic wound healing in diabetic and non-diabetic patients-a prospective, doubleblind randomized study. Lasers Med Sci. 2017;32(4):887-894. https://doi.org/10.1007/s10103-017-2189-7
- 123. Gupta AK, Filonenko N, Salansky N, Sauder DN. The use of low energy photon therapy (LEPT) in venous leg ulcers: a doubleblind, placebo-controlled study. Dermatol Surg. 1998;24(12): 1383-1386. https://doi.org/10.1111/j.1524-4725.1998.tb00019.x
- 124. Sugrue ME, Carolan J, Leen EJ, Feeley TM, Moore DJ, Shanik GD. The use of infrared laser therapy in the treatment of venous ulceration. Ann Vasc Surg. 1990;4(2):179-181. https://doi.org/10.1007/bf02001375
- 125. Lagan KM, McKenna T, Witherow A, Johns J, McDonough SM, Baxter GD. Low-intensity laser therapy/combined phototherapy in the management of chronic venous ulceration: a placebo-controlled study. J Clin Laser Med Surg. 2002;20(3): 109-116. https://doi.org/10.1089/104454702760090173
- 126. Siqueira CP, de Paula Ramos S, Gobbi CA, et al. Effects of weekly LED therapy at 625 nm on the treatment of chronic lower ulcers. Lasers Med Sci. 2015;30(1):367-373. https://doi. org/10.1007/s10103-014-1666-5
- 127. Vitse J, Bekara F, Byun S, Herlin C, Teot L. A double-blind, placebo-controlled randomized evaluation of the effect of lowlevel laser therapy on venous leg ulcers. Int J Low Extrem Wounds. 2017;16(1):29-35. https://doi.org/10.1177/1534734617690948
- 128. Mathur RK, Sahu K, Saraf S, Patheja P, Khan F, Gupta PK. Lowlevel laser therapy as an adjunct to conventional therapy in the treatment of diabetic foot ulcers. Lasers Med Sci. 2017; 32(2):275-282. https://doi.org/10.1007/s10103-016-2109-2
- 129. Kaviani A, Djavid GE, Ataie-Fashtami L, et al. A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report. Photomed Laser Surg. 2011;29(2):109-114. https://doi.org/10.1089/pho.
- 130. Rosa S, Rosa MFF, Marques MP, et al. Regeneration of diabetic foot ulcers based on therapy with red LED light and a natural latex biomembrane. Ann Biomed Eng. 2019;47(4):1153-1164. https://doi.org/10.1007/s10439-019-02220-5
- 131. Ruh AC, Frigo L, Cavalcanti M, et al. Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers Med Sci. 2018;33(1):165-171. https://doi.org/ 10.1007/s10103-017-2384-6
- 132. Feitosa MC, Carvalho AF, Feitosa VC, Coelho IM, Oliveira RA, Arisawa E. Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers. Acta Cir Bras. 2015;30(12): 852-857. https://doi.org/10.1590/s0102-865020150120000010
- 133. Haze A, Gavish L, Elishoov O, et al. Treatment of diabetic foot ulcers in a frail population with severe co-morbidities using at-home photobiomodulation laser therapy: a double-blind,

- randomized, sham-controlled pilot clinical study. Lasers Med Sci. 2022;37(2):919-928. https://doi.org/10.1007/s10103-021-
- 134. Carvalho AF, Feitosa MC, Coelho NP, et al. Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers. Rev Esc Enferm USP. 2016;50(4):628-634. https://doi. org/10.1590/s0080-623420160000500013
- 135. Lucas C, van Gemert MJ, de Haan RJ. Efficacy of low-level laser therapy in the management of stage III decubitus ulcers: a prospective, observer-blinded multicentre randomised clinical trial. Lasers Med Sci. 2003;18(2):72-77. https:// doi.org/10.1007/s10103-003-0259-5
- 136. Zhou Y, Chia HWA, Tang HWK, et al. Efficacy of low-level light therapy for improving healing of diabetic foot ulcers: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen. 2021;29(1):34-44. https://doi.org/10.1111/wrr.12871
- 137. Li S, Wang C, Wang B, et al. Efficacy of low-level light therapy for treatment of diabetic foot ulcer: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2018;143:215-224. https://doi.org/10.1016/j.diabre s.2018.07.014
- 138. Huang J, Chen J, Xiong S, Huang J, Liu Z. The effect of lowlevel laser therapy on diabetic foot ulcers: a meta-analysis of randomised controlled trials. Int Wound J. 2021;18(6):763-776. https://doi.org/10.1111/iwj.13577
- 139. Santos CMD, Rocha RBD, Hazime FA, Cardoso VS. A systematic review and meta-analysis of the effects of low-level laser therapy in the treatment of diabetic foot ulcers. Int J Low Extrem Wounds. 2021;20(3):198-207. https://doi.org/10.1177/ 1534734620914439
- 140. Bilska A, Stangret A, Pyzlak M, Wojdasiewicz P, Szukiewicz D. Skin surface infrared thermography in pressure ulcer outcome prognosis. J Wound Care. 2020;29(12):707-718. https://doi.org/10.12968/jowc.2020.29.12.707
- 141. Gupta AK, Carviel JL. Meta-analysis of photobiomodulation for the treatment of androgenetic alopecia. J Dermatolog Treat. 2021;32(6):643-647. https://doi.org/10.1080/09546634. 2019.1688755
- 142. Kim H, Choi JW, Kim JY, Shin JW, Lee SJ, Huh CH. Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. Dermatol Surg. 2013;39(8):1177-1183. https://doi.org/10. 1111/dsu.12200
- 143. Barikbin B, Khodamrdi Z, Kholoosi L, et al. Comparison of the effects of 665 nm low level diode Laser Hat versus and a combination of 665 nm and 808nm low level diode Laser Scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther. 2017;13:141-150. https://doi.org/10.1080/147 64172.2017.1326609
- 144. Esmat SM, Hegazy RA, Gawdat HI, et al. Low level lightminoxidil 5% combination versus either therapeutic modality alone in management of female patterned hair loss: a randomized controlled study. Lasers Surg Med. 2017;49(9): 835-843. https://doi.org/10.1002/lsm.22684
- 145. Friedman S, Schnoor P. Novel approach to treating androgenetic alopecia in females with photobiomodulation (Low-Level laser therapy). Dermatol Surg. 2017;43(6):856-867. https://doi.org/10.1097/dss.000000000001114
- 146. Blum K, Han D, Madigan MA, Lohmann R, Braverman ER. "Cold" X5 Hairlaser $^{\!\scriptscriptstyle{TM}}$ used to treat male androgenic alopecia and hair growth: an uncontrolled pilot study. BMC Res Notes. 2014;7:103. https://doi.org/10.1186/1756-0500-7-103
- 147. Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human

- scalp hair mediated by visible red light laser and LED sources in males. *Lasers Surg Med.* 2013;45(8):487-495. https://doi.org/10.1002/lsm.22173
- 148. Leavitt M, Charles G, Heyman E, Michaels D. HairMax Laser-Comb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009; 29(5):283-292. https://doi.org/10.2165/00044011-200929050-00001
- 149. Mai-Yi Fan S, Cheng YP, Lee MY, Lin SJ, Chiu HY. Efficacy and safety of a low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, self-comparison, sham device-controlled trial. *Dermatol Surg*. 2018;44(11):1411-1420. https://doi.org/10.1097/dss.0000000000001577
- 150. Suchonwanit P, Chalermroj N, Khunkhet S. Low-level laser therapy for the treatment of androgenetic alopecia in Thai men and women: a 24-week, randomized, double-blind, sham device-controlled trial. *Lasers Med Sci.* 2019;34(6): 1107-1114. https://doi.org/10.1007/s10103-018-02699-9
- 151. Gupta AK, Bamimore MA, Foley KA. Efficacy of non-surgical treatments for androgenetic alopecia in men and women: a systematic review with network meta-analyses, and an assessment of evidence quality. J Dermatolog Treat. 2022; 33(1):62-72. https://doi.org/10.1080/09546634.2020.1749547
- 152. Liu KH, Liu D, Chen YT, Chin SY. Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials. Lasers Med Sci. 2019;34(6):1063-1069. https://doi.org/ 10.1007/s10103-019-02723-6
- 153. Feldman PR, Gentile P, Piwko C, et al. Hair regrowth treatment efficacy and resistance in androgenetic alopecia: a systematic review and continuous Bayesian network metaanalysis. Front Med (Lausanne). 2022;9:998623. https://doi. org/10.3389/fmed.2022.998623
- 154. Zhang Y, Su J, Ma K, Fu X, Zhang C. Photobiomodulation therapy with different wavebands for hair loss: a systematic review and meta-analysis. *Dermatol Surg.* 2022;48(7):737-740. https://doi.org/10.1097/dss.000000000003472
- 155. Lueangarun S, Visutjindaporn P, Parcharoen Y, Jamparuang P, Tempark T. A systematic review and meta-analysis of randomized controlled trials of United States food and drug administration-approved, home-use, low-level light/laser therapy devices for pattern hair loss: device design and technology. J Clin Aesthet Dermatol. 2021;14(11):E64-E75.
- Wang W, Gegentana, Tonglaga, Bagenna, Li Y. Treatment of alopecia areata with nonablative fractional laser combined with topical minoxidil. *J Cosmet Dermatol*. 2019;18(4):1009-1013. https://doi.org/10.1111/jocd.12883
- 157. Al-Dhalimi MA, Al-Janabi MH, Abd Al Hussein RA. The use of a 1,540 nm fractional erbium-glass laser in treatment of alopecia areata. *Lasers Surg Med.* 2019;51(10):859-865. https://doi.org/10.1002/lsm.23133
- 158. Hottz F, Herchenhorn D, Lenzi J, Andrade J, Freire V, Pinho P. Photobiomodulation as a treatment for dermatitis caused by chemoradiotherapy for squamous cell anal carcinoma: case report and literature review. *Radiat Oncol.* 2022;17(1):49. https://doi.org/10.1186/s13014-022-02015-4
- 159. Censabella S, Claes S, Robijns J, Bulens P, Mebis J. Photobiomodulation for the management of radiation dermatitis: the DERMIS trial, a pilot study of MLS(®) laser therapy in breast cancer patients. Support Care Cancer. 2016;24(9):3925-3933. https://doi.org/10.1007/s00520-016-3232-0
- 160. Robijns J, Censabella S, Claes S, et al. Prevention of acute radiodermatitis by photobiomodulation: a randomized,

- placebo-controlled trial in breast cancer patients (TRANSDERMIS trial). *Lasers Surg Med.* 2018. https://doi.org/10.1002/lsm.22804
- 161. Robijns J, Censabella S, Claes S, et al. Biophysical skin measurements to evaluate the effectiveness of photobiomodulation therapy in the prevention of acute radiation dermatitis in breast cancer patients. Support Care Cancer. 2019;27(4): 1245-1254. https://doi.org/10.1007/s00520-018-4487-4
- 162. Robijns J, Lodewijckx J, Claes S, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis in head and neck cancer patients (DERMISHEAD trial). *Radiother Oncol.* 2021;158:268-275. https://doi.org/10.1016/j.radonc. 2021.03.002
- 163. Robijns J, Lodewijckx J, Puts S, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis in breast cancer patients undergoing hypofractioned wholebreast irradiation (LABRA trial). Lasers Surg Med. 2022;54(3): 374-383. https://doi.org/10.1002/lsm.23475
- 164. Gobbo M, Rico V, Marta GN, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis: a systematic review and meta-analysis. Support Care Cancer. 2023;31(4):227. https://doi.org/10.1007/s00520-023-07673-y
- 165. Aguiar BRL, Guerra ENS, Normando AGC, Martins CC, Reis P, Ferreira EB. Effectiveness of photobiomodulation therapy in radiation dermatitis: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;162:103349. https://doi.org/10.1016/j.critrevonc.2021.103349
- 166. Kurtti A, Nguyen JK, Weedon J, et al. Light emitting diode-red light for reduction of post-surgical scarring: results from a dose-ranging, split-face, randomized controlled trial. *J Bio-photonics*. 2021;14(7):e202100073. https://doi.org/10.1002/jbio.202100073
- Park YJ, Kim SJ, Song HS, et al. Prevention of thyroidectomy scars in Asian adults with low-level light therapy. *Dermatol Surg.* 2016; 42(4):526-534. https://doi.org/10.1097/dss.00000000000000880
- 168. Capon A, larmarcovai G, Gonnelli D, Degardin N, Magalon G, Mordon S. Scar prevention using Laser-Assisted Skin Healing (LASH) in plastic surgery. Aesthet Plast Surg. 2010;34(4):438-446. https://doi.org/10.1007/s00266-009-9469-y
- Capon A, larmarcovai G, Mordon S. Laser-assisted skin healing (LASH) in hypertrophic scar revision. J Cosmet Laser Ther. 2009; 11(4):220-223. https://doi.org/10.3109/14764170903352878
- 170. Carvalho RL, Alcântara PS, Kamamoto F, Cressoni MD, Casarotto RA. Effects of low-level laser therapy on pain and scar formation after inguinal herniation surgery: a randomized controlled single-blind study. *Photomed Laser Surg.* 2010;28(3):417-422. https://doi.org/10.1089/pho.2009.2548
- 171. Pereira TRC, Vassão PG, Venancio MG, Renno ACM, Aveiro MC. Non-ablative radiofrequency associated or not with low-level laser therapy on the treatment of facial wrinkles in adult women: a randomized single-blind clinical trial. *J Cosmet Laser Ther*. 2017;19(3):133-139. https://doi.org/10.1080/14764172.2016.1269929
- 172. Nam CH, Park BC, Kim MH, Choi EH, Hong SP. The efficacy and safety of 660 nm and 411 to 777 nm light-emitting devices for treating wrinkles. *Dermatol Surg.* 2017;43(3):371-380. https://doi.org/10.1097/dss.0000000000000081
- 173. Tierney E, Hanke CW. Randomized controlled trial: comparative efficacy for the treatment of facial telangiectasias with 532 nm versus 940 nm diode laser. *Lasers Surg Med.* 2009; 41(8):555-562. https://doi.org/10.1002/lsm.20811
- 174. Crippa A, Menegatti E, Zini F, et al. Safety and short-term efficacy of telangiectasia treatment by means of an innovative combination of 532 and 808 nm transdermal diode laser. *Phlebology*. 2019; 34(10):715-720. https://doi.org/10.1177/0268355519841999

J Am Acad Dermatol Volume ■■, Number ■

- 175. Sadick NS. A study to determine the efficacy of a novel handheld light-emitting diode device in the treatment of photoaged skin. *J Cosmet Dermatol*. 2008;7(4):263-267. https://doi.org/10.1111/j.1473-2165.2008.00404.x
- 176. Alster TS, Tanzi EL. Effect of a novel low-energy pulsed-light device for home-use hair removal. *Dermatol Surg.* 2009;35(3): 483-489. https://doi.org/10.1111/j.1524-4725.2009.01089.x
- 177. Wolfenson M, Hochman B, Ferreira LM. The 975 nm diode laser in the photothermal treatment of the aging and
- sagging face and neck. *Photomed Laser Surg.* 2016;34(1):27-35. https://doi.org/10.1089/pho.2015.3934
- 178. Russell BA, Kellett N, Reilly LR. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. *J Cosmet Laser Ther.* 2005;7(3-4):196-200. https://doi.org/10.1080/14764170500370059
- 179. Lee YI, Lee E, Nam KH, et al. The use of a light-emitting diode device for neck rejuvenation and its safety on thyroid glands. *J Clin Med.* 2021;10(8):1774. https://doi.org/10.3390/jcm10081774