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           1  Introduction
Early childhood caries, or ECC, is the most common chronic infectious disease in kids, 
brought on by sugary foods interacting with bacteria on tooth enamel, primarily Strep-
tococcus mutans. The S. mutans can mainly spread to a child from the mother during 
infancy and infect even predentate babies [1]. ECC is the term used to describe dental 
decay in babies and young children. The process through which a person’s tooth grows 
over time is known as a carious lesion. ECC may be caused by consuming solid and 
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Abstract
Early Childhood Caries (ECC) is one of the most prevalent non-communicable 
diseases. It includes a range of environmental and genetic risk factors due to its 
multifaceted nature. The use of artificial intelligence technologies like Machine 
learning (ML) and Deep learning (DL) in the field of dentistry helps improve the 
diagnosis and treatment of ECC. It provides personalized precision in big data and 
caries prediction. This study mainly focuses on the different risk factors, dental caries 
indexes, and the importance of early caries prediction and treatment. In this review, 
we systematically surveyed previous studies on applying ML and DL algorithms for 
caries prediction. Oral health surveys, longitudinal studies, and databases with dental 
imaging and demographic data are some of the data sources from these articles. 
This study examined various approaches, datasets, methodologies, and algorithms. 
The inclusion criteria are the accuracy of models, the investigation of different risk 
factors, and the applicability of ML and DL in caries prediction. Results showed that 
ML algorithms, such as Support Vector Machines, achieved an accuracy of 88.76% 
on smartphone images, while XGBoost reached 97% accuracy on a health survey 
dataset, and the Random Forest attained 92% accuracy in a large-scale survey. The 
DL algorithms, such as the Convolutional Neural Networks, achieved up to 93.3% 
accuracy on tooth photographs, while Artificial Neural Networks reached 99% 
accuracy for primary molar caries. By leveraging these technologies, dental care can 
achieve improved diagnostic precision, early treatment strategies, and personalized 
healthcare solutions.
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liquid carbohydrates and acids that lower the plaque’s pH and demineralize the enamel 
[2]. Moreover, dental caries is a multifaceted disease primarily created by a sophisti-
cated relationship between environmental and genetic risk factors. Environmental risk 
factors include high sugar intake, dental plaque, bad oral hygiene, insufficient salivary 
flow, and high concentrations of cariogenic bacteria [3, 4]. ECC is also caused by various 
factors, including nutrition, dental hygiene practices, and oral microorganisms, but it 
can be avoided by making the necessary behavioural changes [5]. Socioeconomic factors 
are also risk factors for the early prediction of ECC, like parents’ oral health knowledge, 
feeding style, sugar consumption, the introduction of weaning food, overweightness, and 
allergies. The prevalence of ECC can be decreased by educating parents about evaluating 
their children’s oral health status and recognizing early indications of the disease, such as 
high levels of plaque and enamel opacity [6, 7].

The two predominant causes of ECC are microbial and dietary factors; these factors 
are associated with breast and bottle feeding and are most likely to develop caries in a 
young child. Feeding while sleeping increases the risk rate since the salivary flow and 
oral clearance rate decrease while sleeping [8, 9]. “Bottle tooth decay” is a multifacto-
rial disease; dietary practices are considered the leading risk factor [10–12]. There are 
several risk factors related to this disease: Streptococcus mutans can easily and early 
colonize the child’s oral cavity due to the particular properties of this bacterium and the 
presence of predisposing factors in the host’s mouth [13]. Dietary factors include pro-
longed absorption of sugars from the liquid. The cariogenic sugars in juices and infant 
drinks products are actively broken down by the lactobacilli and S. mutans, produc-
ing energy, thus forming acids that demineralize the dentine and enamel of the teeth. 
Dental caries is more common and progresses quickly during childhood and puberty. It 
demonstrates an epidemiological characteristic that slowly persists beyond puberty, and 
periodontal disease escalates from adolescence. Therefore, dental caries in children must 
be treated since undiagnosed juvenile caries can develop into chronic tooth decay and 
other oral conditions. Preventive and restorative treatments can halt the development 
of dental cavities. However, long-term treatment is required if it damages the dentin or 
pulp due to persistent carelessness [14].

ECC is initially identified as a white and dull tooth due to demineralization, rapidly 
progressing to visible decay along the gingival margin, which is clinically yellow or 
brown in colour. An older baby whose entire number one dentition has fully erupted 
may exhibit a significant development of dental injury [15]. Changes in salivary protein 
components can significantly influence caries resistance or susceptibility. Consequently, 
modifying the oral microbiota, salivary proteins, and other biomolecules present in 
saliva influences the growth of oral microorganisms via several innate defence mech-
anisms. As a result, the protein of saliva could be a volatile indicator of dental fitness 
[16]. The predictors of early formative years of caries are represented via mediating and 
moderating factors [17]. Using statistical tools to identify taxa related to caries and their 
prevalence, with minimal adjustment for societal, environmental, and other influencing 
factors [18]. The destiny validation of an ECC class may be used similarly to present-day 
prediction equipment to assist in discovering children at high risk of developing new 
caries lesions in formative years and adolescence [19].

The Risk Assessment can be conducted to give the basic information required to 
advise the parents on tooth decay prevention. Children at lower risk may not require 
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restorative therapy. Progressive and cavitated lesions in moderate-risk children may 
require repair, whereas proximal enamel and white spot lesions must be treated with 
preventive techniques and progress monitored. To stop the spread of caries, the high-
risk children may need earlier restorative intervention for proximal enamel lesions and 
for progressing and cavitated lesions [19]. Another method for restoring carious lesions 
in young children is atraumatic restorative treatment (ART), which includes using hand 
instruments to remove damaged tooth tissue and adhesive restorative materials to fill 
the cavity [19]. Over 70% of the studies suggested that dental caries in childhood could 
be treated with fluoride. About 20% indicated more complicated treatment methods, 
such as endodontics and extraction. Another 10% of studies suggested that physicians 
should focus on pulp filling and capping [20]. ECC treatment is typically limited to res-
toration or surgical removal of decayed teeth and dietary recommendations. Differ-
ent treatment approaches, such as dietary counselling, chemotherapeutic, and fluoride 
treatments, must be developed that focus on the recurrence-related causative factors, if 
clinical outcomes improve [8].

1.1  Dental caries indexes

Dental indices are quantifiable methods for measuring, assessing, and analysing the state 
of teeth in individuals and groups. Groups or individuals use dental indices to determine 
their health and disease status. Dental indices can include the amount of presence or 
absence of calculus and plaque in a patient’s mouth, the number of existing decayed, 
missing, or filled teeth, the amount of gum bleeding, the amount of presence of fluorosis, 
and the amount of movement of tooth over time. Some indices used for the process are 
the Decayed, Missing, and Filled Teeth (DMFT) Index, the International Caries Detec-
tion and Assessment System (ICDAS) score, the Stone Index, the Caries Severity Index, 
the Caries Susceptibility Index, the Moller Index, and the Nyavad System [22]. A DMFT 
index is used to assess dental caries in a population. It is the sum of decayed, missing, 
and filled teeth. The mean of DMFT is the individual sum of DMFT scores divided by 
the total number of populations. However, they are interpreted as an indicator of dental 
history rather than health. Moreover, patients’ subjective assessments may differ from 
professionally developed objective measures [22]. ICDAS is a clinical scoring method for 
measuring caries activity. Figure 1. shows the schematic diagram of different classifica-
tion scales for the ICDAS II scoring system ranging from zero to six.

Fig. 1  Schematic diagram illustrating the International Caries Detection and Assessment System (ICDAS II) scoring 
system, which classifies caries severity on a scale from 0 (sound tooth surface) to 6 (extensive cavitation). The dia-
gram highlights key visual and clinical features associated with each score, aiding in the standardized assessment 
of caries lesions [21]
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1.2  Machine learning for caries prediction

Artificial intelligence (AI) greatly enhances the diagnostic accuracy of early dental caries 
compared to traditional methods. While conventional techniques such as visual inspec-
tion and radiographs can miss subtle carious lesions, AI algorithms can particularly 
analyze dental images, such as X-rays and intraoral photos, to detect early-stage decay 
that may be invisible to the human eye [23]. AI offers consistent and objective diagnosis, 
reducing human error and bias, and can even predict caries progression by assessing 
risk factors like age, diet, and oral hygiene. Integrated with advanced diagnostic tools, 
AI provides real-time assistance during clinical procedures, enabling timely interven-
tions. This combination of improved detection, personalized treatment planning, and 
enhanced clinical decision-making makes AI a transformative tool in the early detection 
and management of dental caries, ultimately leading to better oral health outcomes [24]. 
The use of AI in healthcare, including dental caries diagnosis, raises important ethical 
issues, particularly around data privacy and patient consent. It is essential to ensure that 
patient data is securely protected to prevent breaches or misuse. Informed consent is 
crucial, ensuring patients understand how AI works and its benefits and risks. Addition-
ally, the societal impact of AI, such as its effect on resource distribution and traditional 
healthcare models, should be considered to ensure fairness, transparency, and sustain-
ability in its application. These ethical considerations are vital for protecting patient 
rights and fostering trust in AI technology [25, 26].

Recent advancements in artificial intelligence, particularly ML and DL, have demon-
strated great potential, enabling early diagnostic prediction of ECC using the diverse 
available datasets. Through the use of algorithms that discover inherent statistical pat-
terns and data structures, machine learning (ML) can anticipate unknown information. 
ML models offer high prediction accuracy, which is also anticipated to advance diagnos-
tics significantly. Additionally, it can analyze data with various features that traditional 
analysis cannot, and helps tackle large amounts of complex data in which the correla-
tion of the variables is unclear [6, 15]. Machine learning is designed to enhance learning 
as it automatically gains experience from example data. It is utilized in various ways in 
healthcare and has emerged as a crucial tool for comprehending and analyzing exten-
sive data. The ML types are unsupervised learning, supervised learning, and reinforce-
ment learning. By discovering patterns between specific data items, machine learning 
is a technology used to forecast future events [14]. A training dataset is used to apply 
machine learning algorithms. The algorithms identify data patterns, build a data mining 
model, and forecast the outcomes based on the input parameters. Predictions can be 
made by comparing the model’s output to the test data values. ML can support individu-
alised or personalized dental treatment plans and diagnose and evaluate various dental 
diseases [15].

1.2.1  Logistic regression

Analyzing binary or dichotomous outcomes with two mutually exclusive levels is pos-
sible with logistic regression (LR) [27]. There are two critical phases in its data analysis. 
First, estimates of the model parameters must be obtained, and second, how well the 
model fits the observed data must be determined. The independent variable, which may 
or may not be a continuous and dichotomous dependent variable, and a dummy variable 
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with just two possible values, 0 and 1, are subjects of a statistical approach called logistic 
regression analysis [28].

1.2.2  Random forest

In many research studies, Random Forest (RF) is a widely used ML algorithm for build-
ing prediction models. Many T decision trees are combined to form the random forest, 
an ensemble learning strategy that reduces variance compared to using only one deci-
sion tree. RF, based on conditional inference trees [29], tackles the problem of variable 
selection bias explored [30] and also recognizes the existence of other variants. Random 
Forest is an ensemble learning method that combines multiple decision trees to improve 
prediction accuracy and reduce overfitting. Each tree in the RF is trained on a random 
subset of the data through a process called bagging, and a random subset of features is 
selected for splitting at each node, a technique known as feature randomization. This 
makes RF robust for high-dimensional data and resistant to overfitting. In predictive 
modelling, the goal is to predict and save time and resources by collecting fewer data and 
using fewer variables [31]. The RF classifier can successfully handle the high dimension-
ality and multicollinearity of the data. It is fast and a lot immune to overfitting. However, 
it is sensitive to the sample design [32, 33].

1.2.3  Support vector machine

The Conceptual view of Support Vector Classification (SVC) is that the algorithm seeks 
the best parting surface (hyperplane) equidistant from two classes. Initially, SVC was 
applied for low-dimensional surfaces, but to build high-dimensional characters, kernel 
functions are introduced. Support vector machines (SVM) algorithmically construct the 
best separation boundaries across data sets by resolving a constrained quadratic opti-
mization problem [11, 12]. Due to their ability to derive detailed analysis of concepts 
and place constraints on classification errors, SVM has drawn much academic focus in 
recent years. The literature has reported performances on par with or better than other 
machine learning methods. Support vector machines have the drawback of producing 
solely binary classification results without the possibility of class membership being 
indicated [34]. The Fig. 2. shows the different machine-learning processes in predicting 

Fig. 2  The schematic diagram shows the different steps involved in the machine learning process for caries pre-
diction [14]
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dental caries. Support Vector Machines (SVMs), on the other hand, are powerful algo-
rithms for classification tasks, particularly in high-dimensional spaces. SVM uses kernel 
functions (e.g., linear, RBF, polynomial) to transform data into higher dimensions and 
finds the optimal hyperplane that maximizes the margin between classes. Hyperparam-
eter tuning is critical for optimizing ML models. In random forest, the key hyperparam-
eters include the number of trees, maximum depth, and minimum samples per split, 
which are often selected using cross-validation [35]. For SVM, the regularization param-
eter (C) and kernel-specific parameters (e.g., gamma for RBF) are tuned to improve 
model accuracy. Training procedures for ML models involve data preprocessing, such as 
normalization and handling missing values, and cross-validation (e.g., k-fold) to evaluate 
model performance and prevent overfitting. These steps ensure that ML models are both 
accurate and generalizable for caries detection tasks [36].

1.3  Deep learning for caries prediction

Deep learning enables simulation models to handle numerous layers to learn data with 
varying abstraction levels, and it also helps the computer to build complex concepts 
from simple ones [37, 38]. One example of the DL method is Near-infrared fluoroscopy 
(TI) imaging, which has recently been demonstrated to detect early-stage lesions effec-
tively. Moreover, Early detection improves prognosis and decreases the necessity of sur-
gical interventions [39]. Using DL algorithms like image classification, different images 
are classified and grouped based on their characteristics. Likewise, Dental illness and 
infections are detected just by using the teeth images; conventional neural networks are 
used [40]. Deep Learning (DL) models, particularly Convolutional Neural Networks 
(CNNs), are highly effective for image-based caries detection because they can auto-
matically extract relevant features from dental images. Additionally, transfer learning is 
commonly employed, where pre-trained models like ResNet and VGG are fine-tuned for 
caries detection tasks. This approach reduces the need for large datasets and improves 
model performance, especially in resource-constrained settings. These methodologies 
make DL models highly accurate and adaptable for early caries detection.

1.3.1  Convolutional neural network

Convolutional neural networks (CNN) with layers that use convolution to extract char-
acteristics. Its convolution process only pools and processes neighbouring data. Convo-
lution, rectified linear unit, and the feature detection layer carry out pooling operations, 
and by applying a convolution filter to the input data, convolution also contributes to 
feature activation [8]. The CNN architecture consists of multiple layers, including con-
volutional layers that apply filters to detect patterns, pooling layers that reduce dimen-
sionality through operations like max-pooling, and fully connected layers that classify 
the extracted features into caries or non-caries categories. Activation functions such 
as ReLU (Rectified Linear Unit) introduce non-linearity, enabling the network to learn 
complex patterns. Optimization techniques like the Adam optimizer are often employed 
for efficient training [41]. Hyperparameter tuning is essential for optimizing CNN per-
formance, with key parameters including the learning rate, batch size, number of epochs, 
and filter sizes. Techniques like grid search and random search are used to identify the 
best hyperparameter values. Training procedures for DL models involve data prepro-
cessing, such as normalization and augmentation (e.g., rotation, flipping), to enhance 
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model generalizability. Cross-validation (e.g., k-fold) is used to evaluate model perfor-
mance and prevent overfitting. Periodontology can benefit from CNN as an unsuper-
vised diagnostic tool. However, it was severely constrained by hardware limits and the 
ineffective interaction between the distinct fields of AI and dentistry. A CNN typically 
accepts a tensor of order as input. It goes through a series of processes like convolution, 
pooling, normalisation, a fully connected layer, and a loss layer [42, 43].

1.3.2  Artificial neural network

Artificial neural networks (ANN), made up of intricately interconnected adaptive pro-
cessing units, are viewed as parallel computer simulations of varying complexity. These 
networks have essential features that appeal to their adaptability, significantly when less 
understanding of problem-solving, but with available training data and intrinsic paral-
lelism that permits quick computations for the solutions [44]. Artificial neurons, com-
monly called “nodes,” are also composed of essential processing components in ANNs. 
A “layer” is a collection of 54 nodes organised in a parallel topology. The hidden, output, 
and input layers are three layers of a simple ANN in which the hidden layer next to the 
output layer, transmits information to the input layer [45].

2  Methodology
This study systematically reviews the application of machine learning (ML) and deep 
learning (DL) algorithms for the detection and prediction of early childhood caries 
(ECC). A systematic search was performed across multiple electronic databases such as 
PubMed, Scopus, IEEE Xplore, and Web of Science. The search strategy used a combina-
tion of MeSH words and keywords with Boolean operators to refine the search results. 
The key terms included (“Artificial Intelligence,” “Machine Learning,” OR “Deep Learn-
ing,“) AND (“Dental Caries,” OR “Early Childhood Caries,” OR “Tooth Decay,“) AND 
(“Convolutional Neural Network” OR “Artificial Neural Network,” OR “Support Vector 
Machine”). Also, the studies published between 2015 and 2025 focusing on advance-
ments in AI models and their clinical applications in dentistry were considered. Tables 1 
and 2 show the inclusion and exclusion criteria considered for the review.

2.1  Inclusion criteria

Table 1  Inclusion criteria for studies on ML and DL in early childhood caries detection and 
prediction
S. no Inclusion criteria Description
1 Focus Articles discussing the application of ML and DL in ECC detection and prediction.
2 Data sources Studies with data from oral health surveys, longitudinal studies, and databases 

with dental imaging and demographic data. Also, the datasets were selected 
from diverse geographic and socioeconomic groups to enhance the AI model’s 
generalizability and reliability.

3 Accuracy Studies reporting the accuracy of ML and DL models in predicting ECC.
4 Publication type Articles published in peer-reviewed journals.

2.2  Exclusion criteria
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Table 2  Exclusion criteria for studies on ML and DL in early childhood caries detection and 
prediction
S. no Exclusion criteria Description
1 Focus Articles that do not focus on ML or DL applications in dentistry.
2 Data or methodology Studies that lack sufficient data or methodology details.
3 Publication type Non-peer-reviewed articles and opinion pieces.

3  Results and discussion
Machine learning (ML), the artificial intelligence engine, has significant consequences 
for public health [15]. ML benefits progress by improving oral health and overall lifestyle 
conditions by giving dental professionals a tool to make quick judgments to prevent den-
tal caries in individuals. ML methods assisted in identifying the likely cause (attribute 
features) of the presence of dental caries. As a result, they could aid in the implemen-
tation of ML-based decision and recommendation support systems in diagnosis, pre-
ventive measures, and consultation with future patients, which considerably cut down 
on the time, money, and labour needed to complete a similar task in the present oral 
healthcare system [14]. The results of a study done by Park YH et al. used four significant 
variables: the Child’s Age, household income, daily brushing frequency, and the mother’s 
DMFT; if the mother’s DMFT value was high, the probability of ECC in the child was 
high. The logistic regression model had the highest Area Under the Receiver Operating 
Characteristic curve (AUROC) of 0.783 [6]. In another study, the SVM model performed 
well with Area Under the curve (AUC), accuracy, specificity, precision, and sensitivity 
values (0.997, 97.1%, 94.3%, 95.1%, 99.6%) and classified the existence/nonexistence of 
root caries precisely compared to other algorithms used such as Random forest (RF), XG 
Boost, K-Nearest Neighbors (KNN), and logistic regression (LR). However, the random 
forest also performed well, but not up to SVM, with an accuracy of 94.1% [15].

In the work of Pang L et al., a caries risk prediction model (CRPM) was built, which 
consists of ML algorithms like random forest and logistic regression. Besides the vari-
ables like “past caries experience,” “cariostatic score,” “plaque index,” “gender,” and 
“whether they were only teenagers in the family,” the “past caries experience” is identified 
as the strongest predictor of individual risk. The random forest performed 0.78 and 0.73, 
whereas the logistic regression-based CRPM performed 0.70 and 0.74 for the training 
and test cohorts. This demonstrated that the precision of CRPM built with RF was stable 
[4]. Related work in developing the RF for a sample assessed by a survey based on caries 
and active care as resultant variables. The threefold cross-validation approach was used 
to build the models on the training sets. The mean decreased Gini coefficient (MDG) 
and mean decreased accuracy (MDA) were used to categorize the various oral health 
indicators. The Random Forest model set accuracy, sensitivity, and specificity for active 
caries and familiarity with caries, respectively, 0.71, 0.94, and 0.68 [5]. Similarly, the den-
tal caries prediction (DCP) model, which consists of machine and deep learning meth-
ods, was developed in this study to predict dental caries in children. Out of methods like 
Deep neural networks (DNN) and binary classification, RF outperformed significantly in 
predicting the results with an accuracy of 92%. To improve model performance, feature 
calibration is used; all methods experience a drop in performance, excluding random 
forest [14]. Three ML techniques (SVM, LR, and Naïve Bayes classifier) were used in 
another study. Out of which, SVM and LR outperformed kernel functions. As a result, 
LR was typically better in classifying the data with an accuracy of 99.83% compared to 
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the other two. While using new data, 92% accuracy was obtained using SVM and cross-
validation [46].

Though LR is better at recognizing bad versus good data, its sensitivity to outliers is 
high since its cost function deviates more quickly than SVM. Moreover, LR and SVM 
produce probability values and 0 or 1 values, respectively [32]. Whereas Hung M. used 
LR since it is considered a traditional ML technique in studies, other methods are used 
to tolerate overfitting, identify high-dimensional relations for the model, ease of deploy-
ment in medical settings, or suitability in the field of machine learning [15]. The SVM 
method, which offers effective solutions to classification issues without making any 
assumptions about the distribution and interdependence of the data, is model-free [47]. 
SVM is well-renowned for its discriminative ability for classification, especially when 
there are numerous features (variables) and small sample sizes (i.e., high-dimensional 
space) [48]. Table 3. depicts the data distribution of studies based on machine learning 
algorithms. Compared to other data mining methods like ANN, RF has an advantage 
and can be utilized to enhance research model comprehension and performance. The 
free variable selection prevents it from overfitting the dataset and creates models with 
high predictive power [14].

Dentists face difficulties detecting caries lesions, and DL models could help clinicians 
improve reliability and accuracy [51]. The trained neural network detected caries lesions 
and classified them according to depth, similar to skilled dentists. Notably, although they 
appear to perform against each other, the neural network may be more sensitive and 
accurate at identifying caries expansions in the outer dentin. It is essential to research 
how leveraging the network affects the reliability of disease diagnosis and therapy selec-
tion [52]. Table 4. represents the following seven research studies using deep learning 
algorithms predominantly focused on CNN and ANN. Casalegno et al. [39] trained a 
CNN-based model using targeted imaging (TI) for automatic identification and detec-
tion of dental caries to successfully learn to predict effectively and replicate that of 
qualified dental experts. The reference and predicted labels significantly concur in the 
occlusal and proximal regions, with 83.6% and 85.6% Area under the curve (AUC). Lee 
et al. [39] used the CNN model to evaluate 3,000 apical radiographs and achieved accu-
racy results of well over 80%, with AUC values ranging between 0.845 and 0.917.

In the work of Zanella et al., an analysis of 189 demographic and dietary characteris-
tics and the dental health of a group of participants is examined through an analysis of 
these determinants. The oral condition is defined as caries’ existence, absence, or res-
toration. The methodology is carried out by building a dense artificial neural network 
(ANN) in search of a predictive model capable of categorizing subjects. The loss func-
tion, accuracy, area under the curve, and the receiving operating characteristic curve 
parameters were created to validate the classification model statistically. The obtained 
results had AUC values of 0.69 and 0.75 and an accuracy of 0.69, which were positively 
accurate [53]. The study by Javed et al. aims to use iOS software developed on the Artifi-
cial Neural Network (ANN) model to predict post-Streptococcus mutans ahead of den-
tal caries excavation. For the current investigation, 45 instances of primary molar teeth 
with occlusal dentinal caries lesions in children were examined. With an efficiency value 
of 0.99033, an ANN model with a 4-5-1 architecture of feedforward backpropagation 
successfully predicted the outcome [54].
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Table 3  Comparison of machine learning (ML) methods applied in ECC prediction studies, 
including algorithms used, datasets, accuracy, and limitations. The table highlights the performance 
of key algorithms such as support vector machines (SVM), random forests (RF), and logistic 
regression (LR), along with their respective strengths and challenges in caries prediction
S. 
no

Authors Algorithms 
used

Dataset Accuracy Limitations

1. Duong 
et al. 
(2021) 
[49]

Support vec-
tor machine
Random 
Forests
K-Nearest 
Neighbors
Gradient 
Boosted Tree
Logistic 
Regression

587 pre-processed smartphone colour images of 
extracted molars and premolars were used

1. 88.76%  Small dataset 
size
 Limited diver-
sity in image 
sources

2. Park 
et al. 
(2021) 
[6]

Logistic 
regression
 XGBoost
 Random 
Forest
Light GBM

Data of 4195 children aged 1–5 years from the 
Korea National Health and Nutrition Examination
Survey data (2007–2018).
https://knhanes.kdca.go.kr/knhanes/main.do

1. 78.4%
2. 78.5%
3. 78%
4. 77.4%

 Relies on self-
reported health 
survey data, 
subject to bias

3. Hung 
et al. 
(2019) 
[15]

Logistic 
regression
XGBoost
Random 
Forest
SVM
K-Nearest 
Neighbours

Data were obtained from the 2015–2016 Na-
tional Health and Nutrition Examination Survey

4. 97%  The dataset is 
region-specific, 
limiting global 
applicability

4. Pang 
et al. 
(2021) 
[4]

Logistic 
Regression
Random 
Forest

A longitudinal study of 1,055 teenagers (710 
teenagers for cohort 1 and 345 teenagers for 
cohort 2) aged 13 years, of whom 953 (633 
teenagers for
cohort 1 and 320 teenagers for the cohort
2) were followed for 21 months.
​h​t​t​p​s​:​​/​/​w​w​w​​.​e​b​i​.​a​​c​.​u​k​​/​e​n​a​/​​d​a​t​a​/​​v​i​e​w​/​P​​R​J​E​B​​4​3​
2​3​3

1. 74%
2. 78%

 Cohort size 
variation and
 Loss of follow-
up participants 
impacts 
outcomes

5. Masood 
et al. 
(2012) 
[50]

Logistic 
Regression

A sample of 1830 school children was studied, 
which comprised 950
(51.9%) boys and 880
(48.1%) girls.

(OR = 1.80, 
P < 0.001)

 Limited algo-
rithms used
Lacks advanced 
ML model 
comparisons

6. Ramos-
Gomez 
et al. 
(2021) 
[5]

 Random 
Forest

The sample consisted of 182 parents/caregivers 
and children 2–7 years old living in Los Angeles 
County.

1. 70% Small sample 
size and
Lack of 
demographic 
diversity

7. Kang 
et al. 
(2022) 
[14]

 RF
 ANN
Convolu-
tional Neural 
Network 
(CNN)
 Gradient 
Boosted De-
cision Trees 
(GBDT)
SVM
 LR
Long 
Short-Term 
Memory 
(LSTM)

The data used in our study were collected from 
a children’s oral health survey conducted in 2018 
by the Korean Center for Disease Control and 
Prevention.
https://www.korea.kr/common/download.do? 
tblKey=EDN&fileId=188769457

1. 92%
2. 88%
3. 87%
4. 85%
5. 83%
6. 82%
7. 75%

High computa-
tional resource 
demands,
Limited gener-
alizability due 
to region-spe-
cific datasets, 
and
Lack of model 
interpretability 
for clinical use

https://knhanes.kdca.go.kr/knhanes/main.do
https://www.ebi.ac.uk/ena/data/view/PRJEB43233
https://www.ebi.ac.uk/ena/data/view/PRJEB43233
https://www.korea.kr/common/download.do
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Also, Deep CNN was employed to find caries in pictures of near-IR light transillumi-
nation in Schwindicke et al.‘s study. In an experimental trial model, 226 removed poste-
rior permanent human teeth (113 premolars and 113 molars) were installed in a dummy 
head in groups of 2 + 2. Two skilled dentists used a computerized annotation tool cre-
ated in-house for each segment to annotate proximal and occlusal caries lesions (on 
average, 435 × 407 × 3 pixels). The pixel-based annotations were transformed into binary 
class levels. Using 10-fold cross-validation, they trained and validated the latest CNNs, 
ResNet50 and ResNet18. During the training phase, we used one-cycle learning rates 
with maximum and minimum learning rates set at 10− 3 and 10− 5, respectively, and data 
augmentation. We also used model performance metrics and feature visualization for 
dentists’ suitability features. On tooth segments from Near-infrared light transillumina-
tion (NILT) images, both models similarly predicted cavities. The final nine ResNet50 
network layers were fully trained using the Adam optimizer with a batch size of 10 and a 
learning rate of 0.5 × 10− 4. They had a marginally higher AUC with an average AUC (95% 
CI) of 0.74. Specificity was 0.76, and sensitivity was 0.59. The negative predicted value 
(NPV) was 0.73, while the positive predicted value (PPV) ranged from 0.63 to 0.74 [56]. 
Figure 3. shows the different processes involved in applying deep learning methods to 
detect dental caries.

Apurva Sonavane et al. classified cavitated and non-cavitated teeth with visual images 
of teeth using CNN and used images from the Kaggle to test the model. By tuning hyper-
parameters, they achieved a maximum accuracy of 71.43 per cent [57]. O. Meyer et al. 

Table 4  Comparison of deep learning (DL) models employed in ECC detection studies, highlighting 
algorithms, datasets, accuracy, and limitations
S. 
no

Authors Algo-
rithms 
used

Dataset Accuracy Limitations

1. Casalegno et 
al. (2019) [39]

CNN 185 training samples Occlusal 
− 83.6%
Proximal 
− 85.6%

Small dataset size limits general-
izability and model robustness

2. Lee et al. 
(2018) [59]

CNN 3000 periapical radiographic 
images

Molar = 89%
Premo-
lar = 88%
Both molar 
and premo-
lar = 82%

The dataset focused only on 
specific tooth types, limiting its 
applicability to broader dental 
contexts

3. Zanella-Calza-
da et al. (2018) 
[53]

ANN 189 dietary and demo-
graphic determinants

69% Limited accuracy
The dataset lacks comprehensive 
dental records for better insights

4. Javed et al. 
(2019) [54]

ANN Caries excavation was done 
for all 45 primary molar 
teeth

99% Small sample size raises con-
cerns about overfitting and a 
lack of diversity

5. Schwendicke 
et al. (2020) 
[56]

CNN 226 extracted posterior per-
manent human teeth (113
premolars, 113 molars) were 
allocated to groups of 2 + 2 
teeth.

74% Focus on extracted teeth does 
not mimic in vivo conditions, 
limiting clinical relevance

6. Sonavane et al. 
(2020) [57]

CNN Kaggle dataset 71.43% The dataset quality and diversity 
are limited

7. Kühnisch et al. 
(2021) [58]

CNN Consisted of 2417 ano-
nymized photographs of 
permanent teeth with 1317 
occlusal
and 1100 smooth surfaces.

93.30% Bias due to region-specific 
dataset
Potential lack of model interpret-
ability for clinical use
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presented a study to evaluate diagnostic performance against industry standards. A 
total of 2,417 unattributed photos of permanent teeth were used in the study, 1,317 of 
which were occlusal and 1,100 of which were smooth surfaces. The AI algorithms’ cycle 
training and continuous testing used each expert assessment as a benchmark. The CNN 
was trained via transfer learning and image augmentation. By splitting the data, valida-
tion, and statistical analysis, when all test photographs were taken into account, 92.5% 
of the time, CNN correctly identified caries with an AUC of 0.964. The classification of 
93.3% of all tooth surfaces was accurate when the caries-related cavitation threshold was 
applied with an AUC of 0.955. ANNs are semiparametric nonlinear models that can eas-
ily handle massive amounts of data and integrate variables [58].

Some limitations exist while performing the models in the studies; for example, the 
data was inadequate to build a DNN completely. Data augmentation may lessen overfit-
ting and enhance the model’s capacity for generalization. Similarly, the dataset did not 
distinguish between proximal, root, and early caries and only included permanent teeth 
[59]. The value is not near zero, but it can be seen that both the data points are still 
trending in that direction, indicating that the test data declines more slowly than the 
training data. Adding more data, eliminating unnecessary characteristics for the model, 
and increasing the number of epochs or the size of the ANN can all help fix this issue 
[60].

Schwandinke et al. used one of the several accessible architectures while performing 
only a small amount of optimization and augmentation. Further research could result in 
greater accuracy, especially if combined with more extensive data [56]. The algorithms 
are anticipated to perform less accurately when applied to other image types, such as 
quadrant images, entire lower/upper jaw images, or intraoral images. Additionally, the 
model’s performance depends on the choice of annotator based on their references, 
which cannot outperform an expert [58]. The importance of diversified data collection 
from various geographic and socioeconomic groups was emphasized to address chal-
lenges in AI-based ECC detection and enhance the model’s generalizability and reli-
ability. Due to the non-availability of standardized datasets across different geographic 
populations, it becomes difficult to compare and implement AI models effectively. This 
lack of standardization deeply affects the generalizability and robustness of the models, 

Fig. 3  The schematic diagram showing the different steps involved in the deep learning process for dental caries 
prediction [55]
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as variations in data collection methods and diagnostic criteria can lead to inconsisten-
cies in model performance. For example, models trained on datasets from one region 
or demographic group may not perform equally well when applied to populations with 
different socioeconomic, geographical, or environmental factors. This limitation under-
scores the need for the development of globally representative datasets that encompass 
diverse populations and standardized protocols for data collection and annotation. 
Without such efforts, AI models’ widespread adoption and reliability in clinical practice 
will remain constrained, limiting their potential to improve oral health outcomes glob-
ally. While many AI models report high accuracy, the results are often based on retro-
spective data and may not reflect real-world clinical scenarios. Prospective clinical trials 
are essential to validate their effectiveness in routine dental practice.

Deep learning models require high computational resources for training and valida-
tion, which may not be possible in low-resource settings. To overcome this, developing 
lightweight-based AI models, utilizing techniques such as model pruning, quantization, 
and edge computing, can reduce computational costs and make AI more accessible in 
low-resource settings. These strategies can ensure that AI applications remain scalable, 
efficient, and applicable across diverse real-world clinical environments, improving their 
overall utility in ECC diagnosis and treatment. Computer-aided design (CAD) and AI-
assisted surgical systems are emerging technologies that help diagnose and treat ECC. 
With the help of CAD systems, precise dental restorations can be designed, aiding in the 
planning and executing restorative procedures for carious teeth. When combined with 
AI, these systems can optimize the design process by automatically adapting to the spe-
cific anatomical needs of the patient. AI-assisted surgical systems, on the other hand, can 
enhance surgical interventions for ECC by providing real-time guidance and improving 
accuracy in procedures such as cavity preparation or tooth extraction. Together, these 
technologies streamline the diagnosis and treatment process, offering more accurate, 
efficient, and personalized care for patients with ECC. Furthermore, explainable AI tech-
niques play an essential role in the identification of ECC by increasing the interpretability 
of these models. Methods such as SHAP (Shapley Additive Explanations), LIME (Local 
Interpretable Model-agnostic Explanations), Grad-CAM (Gradient-weighted Class Acti-
vation Mapping), and saliency maps can provide visual or numerical explanations for 
model predictions, thereby helping clinicians understand why a particular region of a 
dental image is classified as carious [61]. For instance, Grad-CAM can highlight specific 
areas in radiographs or intraoral images that contribute most to the prediction, aiding in 
the precise localization of early carious lesions. This kind of interpretability builds trust 
among clinicians and patients, ensuring that AI is seen as an assistive tool rather than a 
“black box” [62, 63].

4  Conclusion
This review mainly highlights the transformative potential of AI technologies in ECC 
prediction and diagnosis, emphasizing models such as SVM and ANN for their robust-
ness and adaptability. The SVM algorithm and ANN provided almost 90% of accu-
racies in the works of the studies. Moreover, SVM can handle high-dimensional data 
and resolve classification issues, and ANN can integrate variables and handle enor-
mous amounts of data. Moreover, the performance of models might change based on 
the data used, the parameters involved, and the nature of the disease and its diagnosis. 
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However, the innovation in AI technologies associated with ML and DL would lead 
to drastic development in the clinical field and facilitate precision medicines, recom-
mendations in dental examinations, and decision-making in diagnosing dental illness. 
In conclusion, the application of AI technologies, including ML and DL, holds signifi-
cant promise in advancing the diagnosis, prognosis, prediction, and treatment of early 
childhood caries. By leveraging large datasets and sophisticated algorithms, dental pro-
fessionals can improve patient outcomes and enhance clinical decision-making in oral 
healthcare. These efforts can pave the way for a new era of precision dentistry, where 
AI-driven diagnostics and treatment strategies enhance patient outcomes and stream-
line oral healthcare delivery. Future research should focus on integrating AI tools into 
clinical workflows to enhance their applicability in real-world dental practices. Efforts 
should also aim at optimizing AI models for precision medicine in dentistry, ensuring 
they cater to diverse and representative datasets while addressing ethical considerations 
such as data privacy and algorithmic bias. These advancements will support the develop-
ment of lightweight and computationally efficient AI systems, further enabling precision 
dentistry.
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