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Summary
Background The clinical outcomes of SARS-CoV-2 infection vary in severity, potentially influenced by the resident
human microbiota. There is limited consensus on conserved microbiome changes in response to SARS-CoV-2
infection, with many studies focusing on severely ill individuals. This study aimed to assess the variation in the
upper respiratory tract microbiome using saliva specimens in a cohort of individuals with primarily mild to
moderate disease.

Methods In early 2020, a cohort of 831 adults without known SARS-CoV-2 infection was followed over a six-month
period to assess the occurrence and natural history of SARS-CoV-2 infection. From this cohort, 81 participants with a
SARS-CoV-2 infection, along with 57 unexposed counterparts were selected with a total of 748 serial saliva samples
were collected for analysis. Total bacterial abundance, composition, population structure, and gene function of the
salivary microbiome were measured using 16S rRNA gene and shotgun metagenomic sequencing.

Findings The salivary microbiome remained stable in unexposed individuals over the six-month study period, as
evidenced by all measured metrics. Similarly, participants with mild to moderate SARS-CoV-2 infection showed
microbiome stability throughout and after their infection. However, there were significant reductions in
microbiome diversity among SARS-CoV-2-positive participants with severe symptoms early after infection. Over
time, the microbiome diversity in these participants showed signs of recovery.

Interpretation These findings demonstrate the resilience of the salivary microbiome in relation to SARS-CoV-2
infection. Mild to moderate infections did not significantly disrupt the stability of the salivary microbiome,
suggesting its ability to maintain its composition and function. However, severe SARS-CoV-2 infection was
associated with temporary reductions in microbiome diversity, indicating the limits of microbiome resilience in
the face of severe infection.

Funding This project was supported in part by Danone North America and grants from the National Institutes of
Health, United States.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction
Since late 2019, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has caused a worldwide
pandemic that has sickened hundreds of millions of
*Corresponding author.
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people with the illness called coronavirus disease of
2019 (COVID-19) and has killed millions.1 The severity
of the infection has varied across the full range from
asymptomatic carriage to death.2 Although numerous
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Research in context

Evidence before this study
Prior research has investigated the association between the
human microbiome and the clinical outcomes of SARS-CoV-2
infection. However, many studies have focused on the gut
microbiome with the specific impact of SARS-CoV-2 infection
on the salivary microbiome and its relationship with disease
severity having been less explored. While existing studies have
provided insights into the stability and resilience of the
microbiome in various health conditions, there is a gap in
knowledge regarding the changes occurring in the salivary
microbiome during different stages of SARS-CoV-2 infection.

Added value of this study
This study contributes to the existing knowledge by
examining the specific changes in the salivary microbiome
during different stages of SARS-CoV-2 infection. The study
utilized saliva samples collected before, during, and after
infection to comprehensively analyze the total bacterial

abundance, composition, population structure, and gene
function of the microbiome throughout the course of
infection. A unique feature of this study are the unexposed
samples prior to any SARS-CoV-2 infection which provide
insights into microbiome changes during infection relative to
before.

Implications of all the available evidence
This study demonstrated the relative stability of the salivary
microbiome in mild to moderate SARS-CoV-2 infections with
severe infections leading to significant reductions in
microbiome diversity early after infection. These findings shed
light on the salivary microbiome’s resilience and limitations in
the context of severe infection. This research contributes to
the broader understanding of the complex interactions
between the human microbiome and viral infections,
potentially guiding future investigations on microbiome-
based therapies or interventions for managing COVID-19.
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host factors affecting this clinical variation have been
described, together they only account for a portion of the
variation.3–7

The microbiome, the microbial populations living in
and on the human body in enormous number in mul-
tiple discrete niches,8 shows extensive interpersonal
heterogeneity in community structure and composi-
tion.9 Importantly, a healthy microbiome helps defend
against a broad range of bacterial, viral, and eukaryotic
pathogens.10–12 Conversely, these infections can directly
disrupt the microbiome,12,13 and medical treatments,
such as antibiotics, directed against pathogens, can
cause further disruptions.14 For these reasons, studying
the interactions between SARS-CoV-2 infection and the
human microbiome is important, and there have been a
number of prior studies, largely focused on the gut
microbiome.15–22

We identified three key questions about the interac-
tion of SARS-CoV-2 infection and the human micro-
biome: (i) Does the nature of the pre-existing
microbiome predict the clinical intensity of the SARS-
CoV-2 infection? (ii) How does the infection affect the
community structure and composition of the micro-
biome? (iii) Is the severity of infection an important
variable in any observed changes in the microbiome?

To directly address these questions, we leveraged a
unique set of serial saliva specimens from a prospective
study focused on the susceptibility of healthcare workers
(HCW) and other university employees to SARS-CoV-2
in the first wave of COVID-19 in the United States,
prior to the availability of vaccination.23,24 Oral micro-
biota also contribute to the lung microbiome,25–27 and
their presence has been associated with inflammation.26

As such, the salivary microbiome not only provides an
easily accessible proxy of microbes found in the more
distal airways, but is also a potential indicator of lung
health especially pertinent to those infected with SARS-
CoV-2. We now report that in a SARS-CoV-2-naïve
ambulatory population early in the pandemic, the oral
microbiome was highly resilient in the face of the acute,
generally mild or asymptomatic infection but shows al-
terations following illness in those with more severe
symptoms.
Methods
Ethics statement
All study activities were approved by the Rutgers Insti-
tutional Review Board (Pro2020000679) and all partici-
pants provided electronic informed consent prior to
engaging in study activities.

Study cohort
Study participants represented a nested sample of
SARS-CoV-2-exposed and unexposed persons from the
Rutgers Corona Cohort (RCC), which prospectively
examined the risk of acquiring SARS-CoV-2 infection in
548 healthcare workers (HCW), and 283 non-HCW
employed by Rutgers University. This was an unvacci-
nated, immunologically naïve population in early
2020.23,24 Saliva samples were collected at intake (week 0)
and at weeks 2, 4, 8, 16, and 24 (Fig. 1). SARS-CoV-2-
infected participants were those with either: (i) a posi-
tive qPCR test from the collected saliva at any point and/
or (ii) a person who had a positive serology for SARS-
CoV-2 by ELISA, as described.23,24 For those who were
seropositive only, the saliva sample from the same
timepoint was considered as the closest indication of the
time of infection. Since there was no prior literature
reporting 6-month longitudinal studies of the salivary
www.thelancet.com Vol 94 August, 2023
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Fig. 1: Study design schematic. Study participants are a subset from the larger population (n = 829) of the Rutgers Corona Cohort (RCC).1

COVID-negative subjects were selected from a larger pool of negative participants and matched 2:1 with the cases based on age, sex, BMI, and
presence of co-morbidities.
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microbiome in healthy adults, we estimated that a 50%
match would be sufficient to control for background
variation. Unexposed participants were selected from
the pool of unexposed participants during weeks 0–24
and matched to the exposed participants with a 1:2 ratio
based on age group (by decade of life), sex, racial/ethnic
category, and health care worker status (HCW or non-
HCW). If matching based on all criteria was not
feasible, the requirement for matching by HCW status
was relaxed. If matching based on decade of life was not
feasible, subjects were matched to comparators within
±10 years in age. Using this approach, exposed and
unexposed groups were well-balanced by matched
criteria as well as non-matched criteria, including BMI,
GFR, and comorbidities such as cardiovascular disease
and diabetes mellitus (Supplemental Material S1).

To account for participants becoming infected at
different study weeks, we established a standardized
reference point by defining the first positive sample for
all exposed individuals as week 0, with all prior and
subsequent samples shifted accordingly for those par-
ticipants who became positive after the first study visit.
For the unexposed participants, the weeks correspond-
ing to their samples were shifted according to that of
their matched exposed counterparts. Furthermore, to
ensure completeness of data and to minimize missing
data in analyses from those without samples prior to
infection, we divided the subjects into two sub-
cohorts(1): the During and After (DA) cohort comprised
of exposed individuals who were positive at the first
visit, together with their corresponding matched unex-
posed counterparts and(2) the Before, During, and After
(BDA) cohort comprised of exposed individuals who
were negative at their first visit and became positive at a
subsequent visit 2, 4, or 8 weeks later and had a follow-
up visit, together with their corresponding matched
www.thelancet.com Vol 94 August, 2023
unexposed counterparts (Table S1). Sensitivity analysis
was not performed on these subcohorts.

Sample collection
Saliva samples were collected in person at every study
visit using the Spectrum sDNA-1000 kit which includes
a sample preservative and were stored in −80 ◦C. Per
Rutgers University biosafety standards for working with
samples that could potentially contain live SARS-CoV-2,
all collected saliva samples were heat-decontaminated at
56 ◦C for 60 min. This decontamination step was per-
formed after the samples were removed from storage
at −80 ◦C and thawed and before any further handling.

Outcome measures
The primary outcome measure for this study is the
composition of the saliva microbiome as assessed by
analysis of salivary DNA, which was quantified using
multiple approaches. First, 16S rRNA gene abundance
was measured using quantitative polymerase chain re-
action (qPCR). Second, the microbiome composition
was assessed through 16S rRNA gene sequencing,
which allowed for the measurement of taxonomic
composition based on amplicon sequence variants
(ASVs).28 To characterize the composition of the ASVs,
alpha diversity metrics including Faith’s Phylogenetic
Diversity,29 Pielou Evenness,30 and number of observed
features (ASVs)28 were calculated. Beta diversity metrics,
specifically weighted and unweighted UniFrac,31 were
used to evaluate the dissimilarity between samples.
Moreover, the ASVs were further categorized at the
phylum, genus, and species levels before statistical
analysis.32 Lastly, the functional gene pathways of the
microbiome were measured using shotgun meta-
genomic sequencing. To characterize the features ob-
tained from shotgun metagenomic sequencing, the
3
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alpha diversity metrics Shannon entropy,33 Pielou
Evenness, and observed features (gene pathways)34

were computed. The beta diversity metrics, Jaccard35

and Bray–Curtis36 analyses, were used to assess the
dissimilarity between samples based on their func-
tional gene pathways. In addition to the primary out-
comes, a secondary outcome measured in the shotgun
metagenomic sequencing was the sequencing depth,
expressed as the number of gigabases, both in terms of
total bases and the portion specifically mapping to
bacterial reads.34

DNA extraction
DNA was extracted using the DNeasy PowerSoil Kit
protocol (Qiagen) for saliva, as described.37 Post-
extraction DNA quantity and quality was measured us-
ing Thermo NanoDrop 1000.

16S rRNA gene quantification
16S rRNA gene was quantified with qPCR using SYBR
green following kit instructions on a Roche LightCycler
480. The total reaction volume in each well was 20 μL
containing 10 μL of SYBR green master mix, 2 μL of
sample, 0.5 μL each of forward and reverse primers, and
7 μL of RNase-free water. The samples were run with pre-
incubation at 95 ◦C for 5 min and 45 amplification cycles
of 95 ◦C for 10 s, 60 ◦C for 16 S, and 72 ◦C for 10 s,
followed by a 1-min melting curve at 65 ◦C. The forward
primer: 338F—ACTCCTACGGGAGGCAGCAG, and
reverse primer: 518R–ATTACCGCGGCTGCTGG, were
used.

16S rRNA sequencing library preparation and
sequencing
The 16S rRNA gene sequencing library was prepared
using the Earth Microbiome Project (EMP) protocol, as
described.37,38 In short, extracted saliva DNA was PCR-
amplified with barcoded primers targeting the V4 re-
gion of the 16S rRNA gene according to the EMP 16S
Illumina Amplicon protocol with the 515F:806R primer
pairs. Control PBS and sample preservative that had
undergone the same DNA extraction were also pro-
cessed. Each PCR product was quantified using Pico-
Green (Invitrogen), and equal amounts of DNA from
each sample were pooled and cleaned using the Ultra-
Clean PCR Clean-Up Kit (MoBio) and assayed on one of
two sequencing runs. DNA sequencing reactions were
conducted at GENEWIZ, Inc. (South Plainfield NJ,
USA) using a MiSeq sequencing platform (Illumina,
San Diego CA, USA). We performed 2 × 250
sequencing. After sequencing, there were a total of
1.68E7 read pairs across both runs with a mean of
19,049 read pairs per sample. Post-processing, there was
a total of 1.37E7 single forward reads with median of
15,756 (SD: 6185) single reads per sample. Samples
with fewer than 3222 reads were excluded from the
analysis.
16S rRNA gene sequencing bioinformatics and
statistical analysis
Data were processed using QIIME 2 version 2021.4.39

We performed the analysis using a single end process-
ing pipeline. In short, sequences were demultiplexed/
denoised using the DADA2 q2 plugin.28 Features were
classified using skLearn implemented in QIIME2 with a
classifier that was pre-trained on Silva 138. The phylo-
genetic tree was built using the SEPP plugin and the
Silva 128 reference tree.40 Features that did not classify
at the phylum level or were classified as mitochondria or
chloroplast were filtered from the analysis. Samples
were rarefied at 3222 reads. Diversity metrics and
PERMANOVA statistical tests were calculated in
QIIME2. Where reported as normalized values, alpha-
diversity metrics were normalized as a proportion of
the baseline. Specifically, each value was calculated as
the ratio of that timepoint measurement in relation
to the corresponding baseline timepoint for that subject.
All other statistics were calculated using the program-
ming language R. To account for the repeat measures
on participants (across time), linear mixed effect models
using the package nlme41 in R were used. Models
included timepoint to account for variation over time
and age group. When appropriate, we used Kruskal–
Wallis rank sum test with Dunn’s post-hoc test as
necessary or Mann–Whitney U test using base R. All
visualizations were created using ggplot2.42 Differential
abundance tests were performed using MaAslin243 with
FDR correction. Features with a corrected q-value <0.05
were identified as significant.

Shotgun metagenomic sequencing
Human DNA was depleted as described.37,44 In short,
250 μL from each saliva sample was centrifuged at
10,000 rcf at 4 ◦C for 9 min. Supernatant was discarded
and pellets were resuspended in 200 μL of sterile H20
and incubated at room temperature for 5 min, then
10 μL of a 0.2 mM PMA solution was added and sam-
ples were incubated in the dark for 5 min. Samples were
then placed horizontally on ice <20 cm from a fluores-
cent light bulb (200 W, 2030 lumens, 3000K) for 25 min,
vertexing and rotating every 5 min. Samples were stored
at −20 ◦C until DNA extraction using the Qiagen Pow-
erSoil kit, as described above.

DNA library preparations and sequencing reactions
were conducted at Novogene Corporation Inc. The
Illumina DNA Prep Kit was used to prepare the libraries
according to the manufacturer’s recommendations. The
Qubit® 2.0 Fluorometer was used to measure library
concentration, and size was measured via LabChip GX
Chip using the DNA NGS 3K Assay Kit (PerkinElmer,
Inc.). If necessary, samples were rerun using the Bio-
Analyzer 2100 (Agilent) with the Agilent High-
Sensitivity DNA Kit. Libraries were quantified using
QPCR with the KAPA SYBER FAST Library-Quant-
Illumina Kit. Sequencing was performed using 150
www.thelancet.com Vol 94 August, 2023
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paired end (PE150) configuration on the NovaSeq 6000
S4 Flowcell using Workflow A, with 1% PhiX DNA
spiked in with pooled libraries as a control. The raw data
from the Illumina platform are transformed to
Sequenced Reads (Raw Data) by base calling. Data were
checked for quality by analyzing the Distribution of
Sequencing Quality (Q30 > 80%), the Distribution of
Sequencing Error Rate, and the Distribution of A/T/G/
C Bases. Data were filtered by removing reads contain-
ing N >10% (N representing bases that cannot be
determined) and those reads containing low quality
(Qscore ≤ 5) bases >50% of the total base count. After
sequencing, there was a total of 2377.3 GB with a me-
dian of 18.3 GB per sample (IQR: 5.2) (Fig. S2). Post-
processing, there was a total of 642.0 microbial GB
with a median of 4.1 microbial GB per sample (IQR:
5.6), with a median of 24% of sequencing reads
assigned to bacteria (Fig. S2).

Shotgun bioinformatics and statistical analysis
Sequences were trimmed and human reads were
removed using the tool Kneaddata v0.10.0 (https://
github.com/biobakery/kneaddata) using default param-
eters. Gene function and pathway analysis was con-
ducted using HuMAnN3 v3.0.0a4,34 with default
parameters. Abundances of genes or pathways were
renormalized to counts per million reads (CPM) using
the HuMAnN3 utility script. Taxonomic identification
was determined using MetaPhlAn3 v3.0.745 with default
parameters. Co-ocurrence networks were created using
Sparse Correlation Network Investigation for Composi-
tional data (SCNIC)46 with default parameters and a
correlation significance being defined at a correlation co-
efficient cutoff of >0.35. Differential abundance tests
were performed using MaAslin243 with FDR correction.
Features with a corrected q-value <0.05 were identified
as significant. When appropriate, we used the Kruskal–
Wallis rank sum test with Dunn’s post-hoc test as
necessary or Mann–Whitney U test using base R.

Role of funders
This project was supported in part by Danone North
America (MJB) and grants from the National Institutes
of Health: grant U01 AI122285 (MJB), R01AI158911
(MJB, EB. MLG, DBH), and R61HD105619 (DBH).
Results
Cohort description
Study participants were followed over 24 weeks and
monitored for SARS-CoV-2 infection (Fig. 1). The
SARS-CoV-2 positive participants (exposed group)
were matched 2:1 based on age, sex, racial/ethnic
category, and health care worker status (HCW or non-
HCW) with unexposed individuals from the larger
cohort who were never positive in the same time
period (Table S1). Because the exposed group became
www.thelancet.com Vol 94 August, 2023
positive at different times, we divided the subjects
into two cohorts to avoid gaps in datapoints prior to
infection: (1), those who were positive at the first visit
(and their matched unexposed counterparts) were
classified as the During and After (DA) cohort; and
(2), those who were negative at their first visit and
became positive at a subsequent visit 2, 4, or 8 weeks
later (and their matched unexposed counterparts)
were classified as the Before, During, and After (BDA)
cohort (Fig. 1, Table S1). In this racially diverse
cohort, most participants were women (73.2%), <60
years old (86.2%), not current smokers (95.7%), and
119 of the 138 participants (86.2%) were HCWs
(Table S1). Of those with a SARS-CoV-2 infection
during the 24-week study period, the majority re-
ported no, mild, or moderate symptoms (71.6%) with
only seven (8.6%) visiting the ER and three (3.7%)
being admitted to the hospital none of whom were
admitted to the ICU nor intubated (Table S1). There
were minimal interventions in the SARS-CoV-2-
exposed participants: five SARS-CoV-2-positive par-
ticipants (6.1%) were treated with antibiotics and no
unexposed individuals reported antibiotic use over the
course of the study, one exposed participant (1.2%)
received corticosteroids, two (2.5%) received antico-
agulants, six (7.4%) received hydroxychloroquine, and
one (1.2%) received the antiviral, remdesivir
(Table S1). Participants were ill for a median of
17 ± 121 (IQR) days, with a bimodal distribution,
almost entirely ≤30 or >90 days (Fig. S1).

Total bacterial abundance
First, we investigated whether or not acute SARS-
CoV-2 infection affected the bacteria concentrations
in saliva. As expected, the bacterial concentrations
did not vary significantly over time in the unexposed
group (n = 57, linear mixed effects model, p > 0.05).
In the 34 SARS-CoV-2 exposed participants from
whom we could analyze specimens before, during,
and after infection, we found no evidence of signif-
icant changes in bacterial abundance over time based
on fitting linear mixed effects models accounting for
time and repeat measures (Fig. 2A, p > 0.05). Simi-
larly, in the 37 participants we followed after SARS-
CoV-2 infection, there were no significant changes
over time (Fig. 2B; linear mixed effects model,
p > 0.05). Finally, comparing the specimens from all
participants without SARS-CoV-2 infection to those
from the 75 samples from participants during their
infection, there was no significant difference in 16 S
rRNA gene number across all timepoints (Student’s
T-test, p > 0.05). From these data, we concluded that
acute SARS-CoV-2 infection did not significantly
affect the oral bacterial load detected in expectorated
saliva nor was there a significant difference in bac-
terial load throughout course of SARS-CoV-2
infection.
5

https://github.com/biobakery/kneaddata
https://github.com/biobakery/kneaddata
www.thelancet.com/digital-health


Fig. 2: Total bacterial populations in the saliva samples in relation to the baseline sample, based on enumeration of 16S rRNA gene
copies. A. SARS-CoV-2-infected subjects before, during, and after viral positivity (n = 34) and their 31 matched unexposed counterparts, with
the study week shown relative to COVID infection with the week of the first positive test defined as week 0. B. SARs-CoV-2-infected subjects
who were virus-positive at the first study visit (n = 47) and their 41 matched unexposed counterparts. There were no significant differences in
either analysis between the exposed or unexposed subjects (Student’s T test, FDR-corrected p > 0.05).
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16S rRNA gene sequencing does not show
significant changes in community richness and
evenness over time in SARS-CoV-2 infection
relative to uninfected participants
To examine how the diversity of the salivary microbiota
changes in relation to SARS-CoV-2 infection, we
modeled alpha diversity over time controlling for
infection status and age. To better examine relative
change within each participant over time, we normal-
ized the data at every timepoint as a proportion of the
baseline (Fig. 3, Fig. S2); we also conducted the same
analyses without normalization (Fig. S2). In each of
these analyses of both richness and evenness, we found
that alpha diversity did not significantly differ between
the SARS-CoV-2 exposed and unexposed participants
either throughout the course of SARS-CoV-2 infection
(BDA sub-cohort) or in recovery after SARS-CoV-2
infection (DA sub-cohort) (Fig. 3, Fig. S2; linear mixed
effects model, p > 0.05). Thus, in this group of mostly
symptomatic participants with clinically mild or mod-
erate infections, who had minimal or no antibiotic
exposure, their SARS-CoV-2 infection did not substan-
tially affect the alpha diversity of the bacterial pop-
ulations in saliva.

Effect of SARS-CoV-2 infection on community
composition of the salivary bacterial populations
Next, we asked whether there were global effects of
SARS-CoV-2 infection on the community composition
of the salivary microbiota. We examined beta diversity in
exposed participants with timepoints before, during,
and after infection and their matched unexposed coun-
terparts (BDA sub-cohort). We found no significant
relationship in community composition relative to
SARS-CoV-2 infection status using a PERMANOVA test
comparing the beta diversity between the exposed group
before, during, and after infection and the unexposed
group as four categorial variables (Fig. 4A and B; PER-
MANOVA, p > 0.05). To control for variation in the
baseline microbiome for each participant and to un-
derstand how microbiome community composition
changed over time, we calculated the beta-diversity
resilience which we assessed by within-participant
pairwise unweighted and weighted UniFrac distances
between the first sample and later time points (Fig. 4C
and D). As anticipated, the unexposed participants had a
non-significant amount of variation resilience over time
(p > 0.05, linear mixed effects model). The SARS-CoV-2-
infected cases exhibited a similar pattern of non-
significant variation over time (p > 0.05, linear mixed
effects model). Using a linear mixed effects model ac-
counting for age, we also did not observe any significant
differences between the infected or matched control
participants at any time point (p > 0.05). Similar results
were observed with metrics of beta-diversity not
involving assumptions about phylogeny (Bray Curtis
and Jaccard, data not shown). In total, these data indi-
cate substantial resilience of the salivary microbiome
both in SARS-CoV-2 unexposed people and in relation
to SARS-CoV-2 infection.

Effect of SARS-CoV-2 infection on the taxonomy of
the salivary microbiome
Next, we assessed whether any particular taxa were
substantially affected by SARS-CoV-2 infection. We
examined taxonomic differences at the phylum, genus,
www.thelancet.com Vol 94 August, 2023
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Fig. 3: Normalized alpha diversity of the salivary microbiome over time. Alpha diversity as measured by Faith’s phylogenetic diversity (PD)
normalized based on proportion of the first timepoint for each individual. A. SARS-CoV-2 infected subjects (n = 34) before, during, and after
viral positivity and their 31 matched unexposed counterparts, with the study week shown relative to COVID infection with the week of the first
positive test defined as week 0. B. SARS-CoV-2-infected subjects (n = 47) who were virus-positive at the first study visit and their 41 matched
unexposed counterparts. There were no significant differences in either analysis between exposed and unexposed subjects (p > 0.05) when
controlling for age and week of sampling, using linear mixed effects modeling.

Fig. 4: Beta diversity of the salivary microbiome over time. Panels: A. PCoA plots of unweighted and B. weighted UniFrac analyses of all
timepoints for the 34 exposed subjects from before, during, and after viral positivity [colored by status relative to SARS-CoV2 infection] and
their 31 matched unexposed subjects. C. Resilience of microbiome composition assessed by within-subject pairwise unweighted and D.
weighted UniFrac distances between the first sample and later time points. Left panels: SARS-CoV-2-infected subjects (n = 34) before, during,
and after viral positivity and their 31 matched unexposed subjects, with the study week shown relative to COVID infection with the week of the
first positive test defined as week 0. Right panels: SARs-CoV-2-infected subjects (n = 47) who were virus-positive at the first study visit and
their 41 matched unexposed subjects. No significant differences were found between exposed and unexposed subjects (p > 0.05) when
controlling for age and week of sampling, using linear mixed effects modeling.
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and species level in the SARS-CoV-2 infected cases and
negative controls (Fig. 5) by examining the changes in
abundances (delta abundances) within individuals be-
tween key timepoints.

To assess taxonomic changes that occurred during
infection relative to before, we compared the change in
abundance of the first SARS-CoV-2-negative timepoint
before infection and the first SARS-CoV-2-positive
timepoint within each individual. There were no sig-
nificant differences in the delta abundance between
SARS-CoV-2 exposed and unexposed at the phylum,
genus, or species level (Student’s T-test; FDR-corrected
p > 0.05). Next, to assess taxonomic changes after re-
covery, we examined differences in the delta abun-
dances between the first SARS-CoV-2-positive sample
and a timepoint ≥8 weeks after infection. We found no
significant differences in the change in taxa abundances
between the SARS-CoV-2 exposed and unexposed in-
dividuals (Student’s T test; FDR-corrected p > 0.05).
Lastly, to examine the changes in the recovery samples
relative to the baseline SARS-CoV-2-negative samples,
we performed this same analysis comparing the delta
abundance of the first SARS-CoV-2-negative timepoint
before infection and a late recovered timepoint ≥8
weeks after infection in relation to the matched controls.
No significant differences in these delta abundances
were found between the SARS-CoV-2 exposed and un-
exposed groups (Student’s T-test; FDR-corrected
Fig. 5: Bar charts of taxon abundances in the salivary microbiome o
relative abundance of taxa at the phylum, genus, and species level of 34 e
matched unexposed subjects using one sample per subject for each period
samples <1.5% are binned into ‘Other’. No significant differences were fo
p > 0.05). Thus, in total, no specific taxonomic signal
of change in abundance of phyla, genera, or species
within individuals was associated with SARS-CoV-2
infection or recovery.

Relationship of microbiome features with
symptom severity
Next, we sought to elucidate relationships with symp-
tom severity focusing only on the infected participants.
To this end, we examined 4 timepoints for saliva sam-
ples from each of the.

81 SARS-CoV-2 exposed individuals as available: (i)
before infection (median ± IQR: 14 ± 14 days before
infection), (ii) the first positive sample during infection
(defined as time0) (iii) early after infection as the first
SARS-CoV-2-negative sample (14 ± 14 days after infec-
tion onset), and (iv) late after infection as the last sample
obtained for that participant (154 ± 7 days after infection
onset).

First, to address the impact of severity of the initial
symptoms, we compared the microbiome from partici-
pants in three categories: asymptomatic or mildly
symptomatic illness (n = 35), moderately symptomatic
illness (n = 22), and severely symptomatic illness
(n = 22), based on self-reported severity of symptoms
(Table S2). There were significant differences in alpha
diversity measures between the symptom severity
groups only early after the illness. Those with severe
f subjects before, during, and after SARS-CoV-2 infection. Mean
xposed subjects before, during, and after viral positivity and their 31
in relation to infection. Taxa with mean relative abundance across all
und between exposed and unexposed subjects (p > 0.05).

www.thelancet.com Vol 94 August, 2023

www.thelancet.com/digital-health


Articles
illness had significantly reduced alpha diversity in the
early after specimen compared to those who had
asymptomatic or mildly symptomatic infection (Pielou
evenness and observed ASVs, FDR-corrected p < 0.05,
Kruskall–Wallis test with Dunn’s post hoc test) and in
those with moderately symptomatic infection (Pielou
evenness, FDR-corrected p < 0.01) (Fig. S3A).

To control for individual variation of the microbiome
at baseline, we also examined the relative change in
alpha diversity during and after infection compared to
the before values within exposed individuals (delta alpha
diversity) (Fig. 6A, Fig. S3B). We found that in those
with severe illnesses, the alpha diversity, as measured by
Faith’s PD, fell significantly in the early after specimens
in relation to the baseline, which then recovered in the
late after specimens (FDR-corrected p < 0.05, Kruskall–
Wallis test with Dunn’s post hoc test, Fig. 6A). The delta
from baseline at the early after timepoint in those with
severe infections also was significantly lower than
observed in those with asymptomatic or mild illness
(p < 0.05, Fig. 6A). Results from analyses of Observed
Features and the Pielou metric showed similar, but not
always significant differences between the deltas for the
early after specimens in those with severe illnesses
(Fig. S3B). In total, these data provide evidence in those
with severe illnesses of a transient individual-specific
decrease in alpha diversity of the salivary microbiome
after infection that recovered within several months.

In our examination of beta-diversity, there were no
apparent clustering according to severity related to the
early after samples (Fig. S4A). However, at baseline (pre-
infection), the samples from the participants with
Fig. 6: Alpha diversity analysis in symptom severity and illness durati
diversity of the salivary microbiome comparing the values before SARS-C
infection, according to the severity of their symptoms. Kruskal–Wallis test
diversity as measured by Faith’s PD of the salivary microbiome of 79 SARS
infection, according to the duration of the clinical illness. Mann–Whitney U
before infection, early after were 14 ± 14 days after infection, and late a
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moderate illness were significantly more homogenous
(less inter-participant distance) compared to the other
groups in both UniFrac analyses; in the Weighted
UniFrac analysis this difference persisted over the study
course (Fig. S4B, FDR-corrected p < 0.01, Kruskall–
Wallis test with Dunn’s post hoc test). We interpret
this as a founder difference between the clinical groups,
and not related to SARS-CoV-2 infection. There were no
significant differences for beta diversity within in-
dividuals over these timepoints (Fig. S4C, p > 0.05).
Finally, we asked whether there were any significant
differences in the taxa at the phylum, genus, or species
level related to symptom severity at any of the time-
points or whether there were significant changes (delta)
in abundance in individual participants over time ac-
cording to illness severity. No significant differences
were observed (linear mixed effects modeling p > 0.05
and Kruskall–Wallis test with Dunn’s post hoc test FDR-
corrected p > 0.05 respectively; data not shown).

Relationship of microbiome features with duration
of illness
To address effects of illness duration, we divided the
SARS-CoV-2-positive cases into two groups: short illness
duration [reported illness ≤30 days (n = 52, 64% of
cases)] and long illness [reported illness >90 days
(n = 27, 33% of cases)] (Fig. S1, Table S3). Only two
cases, who were excluded from these analyses, did not
fall in these distinct groups. This clear dichotomy
allowed us to address whether there were differences in
the salivary microbiome during the infection that could
be related to illness duration. We addressed this
on. A. Change in alpha diversity as measured by Faith’s phylogenetic
oV-2 infection in 81 subjects with those obtained during and after
with Dunn’s post hoc test FDR-correct p-values: *p < 0.05 B. Alpha

-CoV-2 infected subjects in samples obtained before, during, and after
test p-values: *p < 0.05. Before samples were obtained 14 ± 14 days
fter 154 ± 7 days after infection.

9
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question using the same before, during, early after, and
late after samples relative to infection as above. Again,
the most significant differences were related to the
samples obtained from the early after infection period.
At that timepoint, we found reduced alpha diversity
measures in those with the shorter illness durations
compared to those with the longer illnesses (Fig. 6B,
Fig. S3C; p < 0.05, Mann–Whitney U test), which did
not persist late after infection (p > 0.05, Mann–Whitney
U test). We also examined individual-specific changes in
alpha diversity by calculating the change between
timepoints during and after infection relative to before
within the same individual (delta alpha diversity). There
were no significant differences in the delta alpha di-
versity according to illness duration group (Fig. S3D;
p > 0.05, Mann–Whitney U test).

For beta diversity, there also were no significant
differences between the groups at any time point, or in
the individual-specific changes over time (Fig. S5;
p > 0.05, Mann–Whitney U test). However, the short
illness duration group had significantly less distance
(more homogeneity) within microbiome compositions
during infection compared to those with a long illness
duration, but greater distances before and after infection
(Fig. S5; p < 0.05, Mann–Whitney U test). In analyses of
taxa at the phylum, genus, and species levels, we did not
find any significant changes between the groups
differing in illness duration or in the change (delta) in
abundance relative to baseline at any timepoint (linear
mixed effects modeling p > 0.05 and Mann–Whitney U
test p > 0.05 respectively; data not shown).

Shotgun metagenomic analysis
We performed shotgun metagenomic sequencing on a
sub-cohort of 62 subjects, selecting the 32 SARS-CoV-2
exposed individuals who had available samples before,
during, and after infection and 30 matched unexposed
counterparts (Table S4). This analysis focused on three
timepoints with a single sample for each participant for
each timepoint. The time points were the first study
sample (as the Before), the first positive sample (During),
and a sample from ≥8 weeks after the first positive sample
(After) from the exposed group and samples from the
corresponding study weeks for the matched unexposed
individuals. While technical limitations prevented
sequencing all timepoints for these participants, deep
sequence data were available from 123 samples, including
51 samples from 17 participants at all three timepoints
(Table S5). Samples were sequenced at a median depth of
18.3 ± 5.2 (IQR) GB per sample with a per sample median
of 4.1 ± 5.6 GB mapping to microbial reads (Fig. S6).
There were no significant differences in sequencing or
microbial read depth or in percent of total reads that
mapped to bacteria between cases and controls (Fig. S6;
Mann–Whitney U test, p > 0.05).

To understand alteration in global microbial function
during SARS-CoV-2 infection, we examined the
difference of diversity and composition of functional
gene pathways identified by HuMAnN3 between all
SARS-CoV-2-infected cases and controls using both
alpha (Fig. 7A) and beta (Fig. 7B) diversity metrics.
There was no significant difference in alpha diversity
metrics across timepoints in the SARS-CoV-2-infected
cases or compared to controls (Fig. 7A, Kruskal–Wallis
test, p > 0.05). Next, we examined the relationship be-
tween beta diversity and timepoint relative to infection
or exposure status in the Jaccard or Bray–Curtis metrics
of beta-diversity. Using a PERMANOVA test, we found
that the beta diversity did not significantly differ be-
tween the exposed group before, during, and after
infection and the unexposed group (Fig. 7B, PERMA-
NOVA test, p > 0.05).

To examine specific functional gene pathways that
may change in response to SARS-CoV-2 infection, we
considered three main relationships: (1)whether there
was significant variation over time in control samples as
a measure of natural variation, (2)differences in pathway
abundances between controls and before infection
samples in the SARS-CoV-2-infected cases, and (3) how
functional pathways might vary during SARS-CoV-2
infection relative to before and after. To reduce the
number of comparisons generated by such analyses, we
used a co-occurrence, guild-based approach in which
highly co-occurring pathways are binned together, using
SCNIC.46 In short, groups of highly co-occurring func-
tional pathways were binned together and analyzed as
single units (Fig. S7A, Table S6). We used linear mixed
effects modeling implemented using MaAslin243 to
address the three questions posed above, but did not
find any significant differences in feature abundance in
any analysis (FDR-corrected p-value >0.05). Visualizing
the data showed no significant clustering of samples or
features (Fig. S7B).
Discussion
In this work, we examined the microbiome in expectorated
saliva of individuals with and without SARS-CoV-2 infec-
tion, in contrast to previous reports of analyses of the
gut,15–22 nasopharyngeal,47–53 and/or oropharyngeal47,52–58

microbiomes in SARS-CoV-2 infection. We chose expec-
torated saliva because many prior (non-COVID-19) studies
of the oral microbiome have used this approach59–63 and it
can be a proxy for the lung and respiratory tract
microbiome.25–27 We prospectively obtained saliva speci-
mens routinely across the entire 24-week study period that
had been used to detect SARS-CoV-2 infection through
qPCR.23,24 To our knowledge, we report the first
community-based study that examines the effects of
SARS-CoV-2 infection on the salivary microbiome. Since
viral detection from saliva samples is less invasive than
nasopharyngeal or oropharyngeal collection, its on-going
use for detecting SARS-CoV-2 infection may provide
numerous samples for future host-microbiome analyses.
www.thelancet.com Vol 94 August, 2023
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Another distinctive study feature is that all of the
samples were obtained in early 2020, in the initial
COVID-19 wave in the United States. The infections
were exclusively due to the Wuhan-Hu-1 SARS-CoV-2
strain, and no participant had yet received SARS-CoV-2
vaccination. This study, conducted in an immunologi-
cally naïve population, avoids the confounding effects of
different circulating virus variants, and of heteroge-
neous SARS-CoV-2 immune status, and allows us to
study the dynamics of the salivary microbiome before,
during, and after SARS-CoV-2 infection. Although
infection with such an early strain of the virus may not
be fully relevant to current populations and infections,
these findings provide a unique view of initial SARS-
CoV-2 related changes in the oral microbiome. They
also provide baseline knowledge for studies on subse-
quent infections and/or on cases of long COVID. Prior
studies have suggested long-term impact of SARS-CoV-
2 infection on the intestinal microbiome bacteria and
bacteriophages due to SARS-CoV-2 infection,64–66 issues
that should be evaluated in future studies.
www.thelancet.com Vol 94 August, 2023
A third distinguishing feature of this study is that most
of the SARS-CoV-2 infections were generally mild and
required minimal intervention, reflecting the bulk of
community infections worldwide.67 This contrasts with
other microbiome studies in COVID-19 patients that
largely focused on those hospitalized22,47,48,52,53,55–58,68–70; such
patients usually had much more severe infections and
often received multiple therapies including antibiotics
prior to or throughout microbiota ascertainment. As a
result, our findings may paint a more accurate and rele-
vant picture of the effects of SARS-CoV-2 infection on the
upper respiratory track microbiome in most cases and in
the absence of significant treatment.

However in terms of generalizability, it is important
to note that our study population represents a specific
subset of individuals, primarily consisting of healthcare
workers, during a particular period in time who may
have had distinct exposures and protective measures
compared to the general public during the early stages
of the COVID-19 pandemic. We emphasize that our
study did not specifically analyze or compare the
11
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outcomes between healthcare workers (HCWs) and
non-HCWs, nor did we directly compare our cohort’s
characteristics with local contemporaneous community
data. However, while our findings may not be directly
generalizable to the broader population, they provide
important information for understanding the micro-
biome dynamics in individuals with occupational expo-
sure to SARS-CoV-2.

Additionally, while the severity of COVID-19 disease
can vary between males and females,71 this study did not
aim to investigate the sex-specific differences. The dis-
tribution of infected participants in our study reflects
the natural infection rate of both men and women in the
investigated population, and we used sex as a matching
criterion when selecting unexposed participants. Our
primary focus was on examining the changes in the
salivary microbiome in relation to SARS-CoV-2 infec-
tion. However, considering sex as a potential factor,
particularly in investigations of disease severity, in
future studies could contribute to a more comprehen-
sive understanding of the disease and its impact on
different populations.

Our findings indicate that the oral microbiome is
resilient to perturbation by mild to moderate SARS-
CoV-2 infection as evidenced by the lack of substantial
change in its ecological and taxonomic characteristics.
These findings of bacterial stability during infection also
are consistent with the infrequency of overt bacterial
pneumonia in the acute aftermath of mild SARS-CoV-2
infections.67,72 While we observed stochastic changes
within individual participants, the alpha and beta di-
versity across all participants remained relatively
consistent over time and not impacted by mild or
moderate SARS-CoV-2 infection. In contrast, other
studies that show changes in the gut and respiratory
microbiome in mild to moderate SARS-CoV-2 infection
may reflect concomitant medical treatments, especially
antibiotic use,22,55 as our recent report also indicated15;
however, reporting on treatments within these cohorts
has been inconsistent. Although studies of hospitalized
patients with influenza54 or other acute respiratory
illness47 indicate uniqueness of respiratory track mi-
crobial signatures for SARS-CoV-2 infection, it remains
unclear whether these reflect the infection or the treat-
ments administered.

Most reports showing significant upper respiratory
track microbiome changes in SARS-CoV-2 infection
focused on patients hospitalized and/or with severe
symptoms.47,52,53,58 Although most participants in our
cohort were those with mild or moderate symptoms,
among those with severe symptoms, microbiome alpha
diversity was significantly reduced compared to those
less ill, an effect peaking early after infection and
returning to baseline in later samples. Although there
was little antibiotic use overall in this cohort, it was
significantly greater in those with severe symptoms
(Table S2), which may be driving these findings. Despite
the significant diversity changes in those with severe
symptoms, no conserved compositional or taxonomic
changes were identified even when accounting for in-
dividual variation at baseline. The lack of significance
may reflect relatively low subject numbers in the indi-
vidual groups, or that alterations of specific oral taxa in
severe SARS-CoV-2 infection are highly individual spe-
cific. Studies, including the present, that report the
strongest respiratory track microbiome changes in
hospitalized patients with severe infection,47,52,53,58 sug-
gest that major exogenous factors including treatments
or severe immune dysfunction are necessary to perturb
this resilient microbial niche. Nevertheless, substantial
changes in the respiratory track microbiome in hospi-
talized patients are not universal.48,58,70

We observed that SARS-CoV-2-exposed individuals
with shorter illness duration (≤30 days) have signifi-
cantly greater microbiome compositional homogeneity
during infection compared to those with long illness,
despite less homogeneity before and after infection,
which suggests the existence of a conserved, acute re-
sponses to the infection. Significantly lower alpha di-
versity early after infection in those with short illness
duration also suggests a potentially adaptive micro-
biome compositional response to infection that may aid
in earlier recovery. Although we were not able to identify
specific microbial taxa conserved within this group,
further microbiome studies in relation to illness dura-
tion are potentially relevant to the development of late
complications.

To our knowledge, no other studies have examined
serial microbial samples from individuals before, dur-
ing, and after SARS-CoV-2 infection. As such, differ-
ences observed in prior studies not associated with
disease severity or antibiotic treatment may be attrib-
uted to the substantial interpersonal variation in the
upper respiratory track microbiome. In contrast, our
study directly examines the temporal changes in
microbiome communities within individuals as well as
across SARS-CoV-2-exposed and unexposed groups. We
found that mild to moderate SARS-CoV-2 infection does
not lead to significant alterations in the salivary micro-
biome beyond the natural stochasticity observed over
time in non-infected people. However, we did find a
significant reduction in diversity early after infection
(14 ± 14, median ± IQR, days after infection) in SARS-
CoV-2-exposed individuals with severe illness compared
to the diversity of their saliva microbiome before
infection. These findings highlight the relevance of our
work in understanding the stability and adaptability of
the salivary microbiome in the context of SARS-CoV-2
infection and the potential importance of greater
monitoring of those with severe symptoms. Under-
standing the dynamic interplay between host and
microbiome during viral infections may aid in devel-
oping strategies to potentially mitigate the impact of
those infections.
www.thelancet.com Vol 94 August, 2023
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In conclusion, we observed relative stability of the oral
microbiome over the course of SARS-CoV-2 infection,
with minimal impact frommild to moderate infection, but
with significant early changes in those with severe illness,
as well as more conserved changes in those with short
(≤30 days) illness duration. These findings suggest
symptom severity and duration as important factors
related to oral microbiome alterations. As a biological
niche implicated in oral,73,74 pulmonary,26,75 and systemic73

health, the salivary microbiome is an interface worthy of
further exploration in SARS-CoV-2 patients.

Contributors
Obtained and analyzed microbiome data: AJSA, obtained clinical data:
DBH, ESB, TA, PG, analyzed clinical data: DBH, ESB, JR, MLG, TA,
PG, enrolled patients: JLC, RP, constructed study cohort: DBH, ESB,
project administration: MJB, funding acquisition: MJB, supervision:
MJB, visualization: AJSA, writing – original draft: AJSA, MJB, writing –

review & editing: AJSA, DBH, JT, MLG, JLC, RP, ESB, MJB, accessed
and verified the data: AJSA, MJB, decision to submit the manuscript:
AJSA, MJB.

Data sharing statement
16S rRNA gene amplicon sequencing data is publicly available at EBI/
ENA (https://www.ebi.ac.uk/ena) accession number PRJEB62655 and
QIITA (https://qiita.ucsd.edu) study ID 15066. Shotgun metagenomic
sequencing data is available at EBI/ENA accession number
PRJEB62577. All analysis code is available upon reasonable request.

Declaration of interests
The authors declare that there are no competing interests.

Acknowledgements
We thank the study participants for their dedication and time; all
members of the RCC investigative team; Charles Hevi at Infinity Bio-
logiX for assistance with saliva samples; and Margaret Tran, Meliza
Talaue, and Yue Sandra Yin for assistance with DNA extraction and 16S
rRNA gene sequencing.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.ebiom.2023.104731.
References
1 Wang H, Paulson KR, Pease SA, et al. Estimating excess mortality

due to the COVID-19 pandemic: a systematic analysis of COVID-
19-related mortality, 2020–21. Lancet. 2022;399(10334):1513–1536.

2 Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in disease
severity and health care utilization during the early omicron variant
period compared with previous SARS-CoV-2 High transmission
periods - United States, December 2020-January 2022. MMWR
Morb Mortal Wkly Rep. 2022;71(4):146–152.

3 Hou J, Wei Y, Zou J, et al. Integrated multi-omics analyses identify
key anti-viral host factors and pathways controlling SARS-CoV-2
infection. Res Sq. 2022. https://doi.org/10.21203/rs.3.rs-1910932/
v1.

4 van der Made CI, Netea MG, van der Veerdonk FL, Hoischen A.
Clinical implications of host genetic variation and susceptibility to
severe or critical COVID-19. Genome Med. 2022;14(1):96.

5 Heald AH, Jenkins DA, Williams R, et al. Mortality in people with
type 2 diabetes following SARS-CoV-2 infection: a population level
analysis of potential risk factors. Diabetes Ther. 2022;13(5):1037–
1051.

6 Redin C, Thorball CW, Fellay J. Host genomics of SARS-CoV-2
infection. Eur J Hum Genet. 2022;30(8):908–914.

7 Guthmiller JJ, Stovicek O, Wang J, et al. SARS-CoV-2 infection
severity is linked to superior humoral immunity against the spike.
mBio. 2021;12(1):e02940.
www.thelancet.com Vol 94 August, 2023
8 Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R.
Bacterial community variation in human body habitats across space
and time. Science. 2009;326(5960):1694–1697.

9 Human Microbiome Project C. Structure, function and diversity of
the healthy human microbiome. Nature. 2012;486(7402):207–214.

10 Karkman A, Lehtimaki J, Ruokolainen L. The ecology of human
microbiota: dynamics and diversity in health and disease. Ann N Y
Acad Sci. 2017;1399(1):78–92.

11 Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and
evolutionary perspective on human-microbe mutualism and dis-
ease. Nature. 2007;449(7164):811–818.

12 Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health
and disease. Engineering. 2017;3(1):71–82.

13 Libertucci J, Young VB. The role of the microbiota in infectious
diseases. Nat Microbiol. 2019;4(1):35–45.

14 Blaser MJ. Antibiotic use and its consequences for the normal
microbiome. Science. 2016;352(6285):544–545.

15 Yin YS, Minacapelli CD, Parmar V, et al. Alterations of the fecal
microbiota in relation to acute COVID-19 infection and recovery.
Mol Biomed. 2022;3(1):36.

16 Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral
activity in association with gut microbiota composition in patients
with COVID-19. Gut. 2021;70(2):276–284.

17 Hazan S, Stollman N, Bozkurt HS, et al. Lost microbes of COVID-
19: bifidobacterium, Faecalibacterium depletion and decreased
microbiome diversity associated with SARS-CoV-2 infection
severity. BMJ Open Gastroenterol. 2022;9(1):e000871.

18 Tao W, Zhang G, Wang X, et al. Analysis of the intestinal micro-
biota in COVID-19 patients and its correlation with the inflam-
matory factor IL-18. Med Microecol. 2020;5:100023.

19 Newsome RC, Gauthier J, Hernandez MC, et al. The gut micro-
biome of COVID-19 recovered patients returns to uninfected status
in a minority-dominated United States cohort. Gut Microbes.
2021;13(1):1–15.

20 Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in
patients with coronavirus disease 2019 or H1N1 influenza. Clin
Infect Dis. 2020;71(10):2669–2678.

21 Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects
disease severity and dysfunctional immune responses in patients
with COVID-19. Gut. 2021;70(4):698–706.

22 Wu Y, Cheng X, Jiang G, et al. Altered oral and gut microbiota and
its association with SARS-CoV-2 viral load in COVID-19 patients
during hospitalization. NPJ Biofilms Microbiomes. 2021;7(1):61.

23 Horton DB, Barrett ES, Roy J, et al. Determinants and dynamics of
SARS-CoV-2 infection in a diverse population: 6-month evaluation
of a prospective cohort study. J Infect Dis. 2021;224(8):1345–1356.

24 Barrett ES, Horton DB, Roy J, et al. Prevalence of SARS-CoV-2
infection in previously undiagnosed health care workers at the
onset of the U.S. COVID-19 epidemic. preprint. medRxiv. 2020.
https://doi.org/10.1101/2020.04.20.20072470.

25 Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the
upper respiratory tract microbiotas as the source of the lung and
gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037.

26 Segal LN, Clemente JC, Tsay JC, et al. Enrichment of the lung
microbiome with oral taxa is associated with lung inflammation of
a Th17 phenotype. Nat Microbiol. 2016;1:16031.

27 Venkataraman A, Bassis CM, Beck JM, et al. Application of a
neutral community model to assess structuring of the human lung
microbiome. mBio. 2015;6(1):e02284-14.

28 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ,
Holmes SP. DADA2: High-resolution sample inference from Illu-
mina amplicon data. Nat Methods. 2016;13(7):581–583.

29 Faith DP. Conservation evaluation and phylogenetic diversity. Biol
Conserv. 1992;61(1):1–10.

30 Pielou EC. The measurement of diversity in different types of
biological collections. J Theor Biol. 1966;13:131–144.

31 Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and
qualitative beta diversity measures lead to different insights into
factors that structure microbial communities. Appl Environ Micro-
biol. 2007;73(5):1576–1585.

32 Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome. 2018;6(1):90.

33 Shannon CE. A mathematical theory of communication. Bell Syst
Tech J. 1948;27(3):379–423.

34 Franzosa EA, McIver LJ, Rahnavard G, et al. Species-level func-
tional profiling of metagenomes and metatranscriptomes. Nat
Methods. 2018;15(11):962–968.
13

https://www.ebi.ac.uk/ena
https://qiita.ucsd.edu
https://doi.org/10.1016/j.ebiom.2023.104731
https://doi.org/10.1016/j.ebiom.2023.104731
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref1
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref1
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref1
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref2
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref2
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref2
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref2
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref2
https://doi.org/10.21203/rs.3.rs-1910932/v1
https://doi.org/10.21203/rs.3.rs-1910932/v1
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref4
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref4
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref4
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref5
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref5
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref5
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref5
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref6
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref6
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref7
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref7
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref7
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref8
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref8
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref8
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref9
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref9
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref10
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref10
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref10
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref11
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref11
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref11
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref12
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref12
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref13
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref13
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref14
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref14
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref15
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref15
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref15
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref16
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref16
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref16
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref17
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref17
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref17
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref17
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref18
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref18
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref18
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref19
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref19
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref19
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref19
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref20
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref20
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref20
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref21
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref21
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref21
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref22
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref22
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref22
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref23
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref23
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref23
https://doi.org/10.1101/2020.04.20.20072470
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref25
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref25
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref25
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref26
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref26
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref26
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref27
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref27
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref27
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref28
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref28
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref28
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref29
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref29
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref30
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref30
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref31
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref31
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref31
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref31
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref32
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref32
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref32
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref33
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref33
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref34
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref34
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref34
www.thelancet.com/digital-health


Articles

14
35 Jaccard P. The distribution of the flora in the alpine Zone.1. New
Phytol. 1912;11(2):37–50.

36 Sørensen T. A method of establishing groups of equal amplitude in
plant sociology based on similarity of species and its application
to analyses of the vegetation on Danish commons. Biol Skr.
1948;5:1–34.

37 Armstrong AJS, Parmar V, Blaser MJ. Assessing saliva microbiome
collection and processing methods. NPJ Biofilms and Microbiomes.
2021;7(1):81.

38 Caporaso JG, Ackermann G, Apprill A, et al. EMP 16S Illumina
amplicon protocol protocols.io2018.

39 Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive,
scalable and extensible microbiome data science using QIIME 2.
Nat Biotechnol. 2019;37(8):852–857.

40 Janssen S, McDonald D, Gonzalez A, et al. Phylogenetic placement
of exact amplicon sequences improves associations with clinical
information. mSystems. 2018;3(3):e00021.

41 Pinheiro JBD, DebRoy S, Sarkar D. R Core Team nlme: Linear and
nonlinear mixed effects models. R package version 31-152. 2021.

42 Wickham H. ggplot2: elegant graphics for data analysis. New York:
Springer-Verlag; 2018.

43 Mallick H, Rahnavard A, McIver LJ, et al. Multivariable association
in population-scale meta-omics studies. 2021.

44 Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R,
Zengler K. Improving saliva shotgun metagenomics by chemical
host DNA depletion. Microbiome. 2018;6(1):42.

45 Beghini F, McIver LJ, Blanco-Miguez A, et al. Integrating taxo-
nomic, functional, and strain-level profiling of diverse microbial
communities with bioBakery 3. Elife. 2021;10:e65088.

46 Shaffer M, Thurimella K, Sterrett JD, Lozupone CA. SCNIC: Sparse
correlation network investigation for compositional data. Mol Ecol
Resour. 2022;23(1):312–325.

47 Hernandez-Teran A, Mejia-Nepomuceno F, Herrera MT, et al.
Dysbiosis and structural disruption of the respiratory microbiota in
COVID-19 patients with severe and fatal outcomes. Sci Rep.
2021;11(1):21297.

48 De Maio F, Posteraro B, Ponziani FR, Cattani P, Gasbarrini A,
Sanguinetti M. Nasopharyngeal microbiota profiling of SARS-CoV-
2 infected patients. Biol Proced Online. 2020;22:18.

49 Zhang H, Ai JW, Yang W, et al. Metatranscriptomic characteriza-
tion of coronavirus disease 2019 identified a host transcriptional
classifier associated with immune signaling. Clin Infect Dis.
2021;73(3):376–385.

50 Rosas-Salazar C, Kimura KS, Shilts MH, et al. SARS-CoV-2 infec-
tion and viral load are associated with the upper respiratory tract
microbiome. J Allergy Clin Immunol. 2021;147(4):1226–12233.e2.

51 Hoque MN, Sarkar MMH, Rahman MS, et al. SARS-CoV-2 infec-
tion reduces human nasopharyngeal commensal microbiome with
inclusion of pathobionts. Sci Rep. 2021;11(1):24042.

52 Rueca M, Fontana A, Bartolini B, et al. Investigation of nasal/
oropharyngeal microbial community of COVID-19 patients by 16S
rDNA sequencing. Int J Environ Res Public Health. 2021;18(4):2174.

53 Merenstein C, Liang G, Whiteside SA, et al. Signatures of COVID-
19 severity and immune response in the respiratory tract micro-
biome. mBio. 2021;12(4):e0177721.

54 Ma S, Zhang F, Zhou F, et al. Metagenomic analysis reveals
oropharyngeal microbiota alterations in patients with COVID-19.
Signal Transduct Target Ther. 2021;6(1):191.

55 de Castilhos J, Zamir E, Hippchen T, et al. Severe dysbiosis and
specific Haemophilus and Neisseria signatures as hallmarks of the
oropharyngeal microbiome in critically ill coronavirus disease 2019
(COVID-19) patients. Clin Infect Dis. 2022;75(1):e1063–e1071.
56 Gao M, Wang H, Luo H, et al. Characterization of the human
oropharyngeal microbiomes in SARS-CoV-2 infection and recovery
patients. Adv Sci (Weinh). 2021;8(20):e2102785.

57 Ren Z, Wang H, Cui G, et al. Alterations in the human oral and
gut microbiomes and lipidomics in COVID-19. Gut.
2021;70(7):1253–1265.

58 Bradley ES, Zeamer AL, Bucci V, et al. Oropharyngeal microbiome
profiled at admission is predictive of the need for respiratory sup-
port among COVID-19 patients. Front Microbiol. 2022;13:1009440.

59 Nearing JT, DeClercq V, Van Limbergen J, Langille MGI. Assessing
the variation within the oral microbiome of healthy adults.mSphere.
2020;5(5):e00451.

60 Lim Y, Totsika M, Morrison M, Punyadeera C. The saliva micro-
biome profiles are minimally affected by collection method or DNA
extraction protocols. Sci Rep. 2017;7(1):8523.

61 Zaura E, Brandt BW, Teixeira de Mattos MJ, et al. Same exposure
but two radically different responses to antibiotics: resilience of the
salivary microbiome versus long-term microbial shifts in feces.
mBio. 2015;6(6):e01693.

62 Hasan NA, Young BA, Minard-Smith AT, et al. Microbial com-
munity profiling of human saliva using shotgun metagenomic
sequencing. PLoS One. 2014;9(5):e97699.

63 Wong DTW. Salivaomics. J Am Dent Assoc. 2012;143:19S–24S.
64 Brogna C, Cristoni S, Brogna B, et al. Toxin-like peptides from the

bacterial cultures derived from gut microbiome infected by SARS-
CoV-2-new data for a possible role in the long COVID pattern.
Biomedicines. 2022;11(1):87.

65 Brogna C, Costanzo V, Brogna B, et al. Analysis of bacteriophage
behavior of a human RNA virus, SARS-CoV-2, through the
integrated approach of immunofluorescence microscopy, prote-
omics and D-amino acid quantification. Int J Mol Sci. 2023;24(4):
3929.

66 Brogna C, Brogna B, Bisaccia DR, et al. Could SARS-CoV-2 have
bacteriophage behavior or induce the activity of other bacterio-
phages? Vaccines (Basel). 2022;10(5):708.

67 Ayoub HH, Mumtaz GR, Seedat S, Makhoul M, Chemaitelly H,
Abu-Raddad LJ. Estimates of global SARS-CoV-2 infection expo-
sure, infection morbidity, and infection mortality rates in 2020.
Glob Epidemiol. 2021;3:100068.

68 Haran JP, Bradley E, Zeamer AL, et al. Inflammation-type dysbiosis
of the oral microbiome associates with the duration of COVID-19
symptoms and long COVID. JCI Insight. 2021;6(20):e152346.

69 Shen Z, Xiao Y, Kang L, et al. Genomic diversity of severe acute
respiratory syndrome-coronavirus 2 in patients with coronavirus
disease 2019. Clin Infect Dis. 2020;71(15):713–720.

70 Miller EH, Annavajhala MK, Chong AM, et al. Oral microbiome
alterations and SARS-CoV-2 saliva viral load in patients with
COVID-19. Microbiol Spectr. 2021;9(2):e0005521.

71 Chanana N, Palmo T, Sharma K, Kumar R, Graham BB, Pasha Q.
Sex-derived attributes contributing to SARS-CoV-2 mortality. Am J
Physiol Endocrinol Metab. 2020;319(3):E562–E567.

72 Townsend L, Hughes G, Kerr C, et al. Bacterial pneumonia coin-
fection and antimicrobial therapy duration in SARS-CoV-2
(COVID-19) infection. JAC Antimicrob Resist. 2020;2(3):dlaa071.

73 Matsha TE, Prince Y, Davids S, et al. Oral microbiome signatures in
diabetes mellitus and periodontal disease. J Dent Res.
2020;99(6):658–665.

74 Highlander SK, Liu B, Faller LL, et al. Deep sequencing of the oral
microbiome reveals signatures of periodontal disease. PLoS One.
2012;7(6):e37919.

75 Sulaiman I, Schuster S, Segal LN. Perspectives in lung microbiome
research. Curr Opin Microbiol. 2020;56:24–29.
www.thelancet.com Vol 94 August, 2023

http://refhub.elsevier.com/S2352-3964(23)00296-7/sref35
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref35
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref36
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref36
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref36
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref36
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref37
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref37
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref37
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref39
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref39
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref39
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref40
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref40
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref40
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref41
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref41
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref42
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref42
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref43
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref43
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref44
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref44
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref44
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref45
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref45
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref45
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref46
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref46
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref46
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref47
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref47
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref47
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref47
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref48
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref48
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref48
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref49
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref49
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref49
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref49
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref50
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref50
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref50
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref51
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref51
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref51
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref52
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref52
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref52
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref53
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref53
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref53
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref54
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref54
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref54
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref55
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref55
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref55
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref55
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref56
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref56
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref56
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref57
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref57
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref57
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref58
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref58
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref58
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref59
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref59
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref59
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref60
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref60
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref60
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref61
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref61
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref61
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref61
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref62
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref62
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref62
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref63
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref64
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref64
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref64
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref64
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref65
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref65
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref65
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref65
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref65
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref66
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref66
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref66
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref67
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref67
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref67
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref67
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref68
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref68
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref68
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref69
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref69
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref69
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref70
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref70
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref70
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref71
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref71
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref71
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref72
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref72
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref72
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref73
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref73
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref73
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref74
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref74
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref74
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref75
http://refhub.elsevier.com/S2352-3964(23)00296-7/sref75
www.thelancet.com/digital-health

	Saliva microbiome in relation to SARS-CoV-2 infection in a prospective cohort of healthy US adults
	Introduction
	Methods
	Ethics statement
	Study cohort
	Sample collection
	Outcome measures
	DNA extraction
	16S rRNA gene quantification
	16S rRNA sequencing library preparation and sequencing
	16S rRNA gene sequencing bioinformatics and statistical analysis
	Shotgun metagenomic sequencing
	Shotgun bioinformatics and statistical analysis
	Role of funders

	Results
	Cohort description
	Total bacterial abundance
	16S rRNA gene sequencing does not show significant changes in community richness and evenness over time in SARS-CoV-2 infec ...
	Effect of SARS-CoV-2 infection on community composition of the salivary bacterial populations
	Effect of SARS-CoV-2 infection on the taxonomy of the salivary microbiome
	Relationship of microbiome features with symptom severity
	Relationship of microbiome features with duration of illness
	Shotgun metagenomic analysis

	Discussion
	ContributorsObtained and analyzed microbiome data: AJSA, obtained clinical data: DBH, ESB, TA, PG, analyzed clinical data:  ...
	Data sharing statement16S rRNA gene amplicon sequencing data is publicly available at EBI/ENA (https://www.ebi.ac.uk/ena) a ...
	Declaration of interests
	Acknowledgements
	Appendix A. Supplementary data
	References


