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ChatGPT for shaping the future of dentistry: the potential of
multi-modal large language model
Hanyao Huang 1✉, Ou Zheng 2✉, Dongdong Wang2, Jiayi Yin1, Zijin Wang2, Shengxuan Ding3, Heng Yin1, Chuan Xu4,5,
Renjie Yang6, Qian Zheng1 and Bing Shi1

The ChatGPT, a lite and conversational variant of Generative Pretrained Transformer 4 (GPT-4) developed by OpenAI, is one of the
milestone Large Language Models (LLMs) with billions of parameters. LLMs have stirred up much interest among researchers and
practitioners in their impressive skills in natural language processing tasks, which profoundly impact various fields. This paper
mainly discusses the future applications of LLMs in dentistry. We introduce two primary LLM deployment methods in dentistry,
including automated dental diagnosis and cross-modal dental diagnosis, and examine their potential applications. Especially,
equipped with a cross-modal encoder, a single LLM can manage multi-source data and conduct advanced natural language
reasoning to perform complex clinical operations. We also present cases to demonstrate the potential of a fully automatic Multi-
Modal LLM AI system for dentistry clinical application. While LLMs offer significant potential benefits, the challenges, such as data
privacy, data quality, and model bias, need further study. Overall, LLMs have the potential to revolutionize dental diagnosis and
treatment, which indicates a promising avenue for clinical application and research in dentistry.
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INTRODUCTION
Artificial intelligence (AI) has promoted recent progress in digital
health for many years.1,2 AI-equipped applications in dentistry
have been found useful in analyzing medical imaging, including
diagnosing dental caries,3,4 periodontitis,5 and implantitis,6 and
assisting oral and maxillofacial surgery with surgical planning.7

Besides the imaging data, audio data analyses can also benefit
from deep-learning applications, as speech is one of the most
important functions of the oral structure.8,9 Furthermore, dental
education is another emerging application.10 GPT-4, released by
OpenAI, embarks on a new period of AI-powered large language
models (LLMs). ChatGPT, built upon GPT-4, stirred up lots of
interest among millions of scientists and engineers on account of
its impressive human conversational response as a chatbot.11

However, its potential impact on revolutionizing a series of
technologies is more significant. Unlike earlier applications,
ChatGPT is cultivated conversationally upon a tremendous
knowledge base, enabling informative communications for the
improvement of decision knowledge. Before ChatGPT, most AI
technologies focus on the system of one input and one output,
which relies on the amount of training data. With the influx of new
data, re-training is required to update the existing model for more
accurate decision-making. ChatGPT breakthroughs this mode and
incorporates conversation to dynamically capture multiple sources
of existing knowledge for question answering.2,12,13 This human-
friendly feature facilitates the diagnosis process and causes a

significant change in the status quo, and its advancement will also
shape digital health in dentistry.1,14–16 The purpose of this paper is
to provide an overview of the potential application of ChatGPT in
dentistry.

JOURNEY OF LLMS
Before LLMs garner significant attention, language modeling has
undergone a series of revolutions in the past decade. The early
natural language model is carried out with n-gram modeling,17

which is probabilistic modeling yet effective for medical
research.18,19 The first milestone work after n-gram modeling is
word embedding, which represents words in vector space to
understand the natural language from a new quantitative
perspective, promoting clinical research on document analy-
sis.20,21 Among a range of representation modeling, ELMo22

proposed by AllenNLP changes the game to a bi-direction model
pretraining. This modeling approach also influences medical
language research20 and is also evaluated.23 Since then, bi-
directional deep-learning models have been proposed like BERT24

and Generative Pretrained Transformer (GPT).25 Built upon these
models, a range of medical language models are proposed to
accelerate medical research progress, such as a family of medical
BERT models,26–29 and clinical researchers found that the increase
in model size significantly improves a variety of medical
applications.21,30–32 However, they are limited to medium model
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scales due to architecture design and hardware support, although
some efficient algorithms are proposed for the medical
domain.20,33,34 One of the most important LLMs is T5, with 11
billion parameters proposed by Google.35 Another rival model is
GPT-3, developed by OpenAI, which contains 175 billion
parameters. These billion-parameter models embark on a new
chapter of LLMs and their applications. One of the most successful
application instances is ChatGPT, a variant of InstructGPT36

developed upon GPT-3, optimized by conversational response
training. ChatGPT is equipped with interactive training which
involves human feedback reinforcement learning and exhibits
powerful language skills to generate human-like texts in real-time
conversation. This interactive modeling also influences medical
research like education.37,38 All these rely on large-scale repre-
sentation pretraining, which becomes critical to complex problem-
solving with data in cross-modality, even for ChatGPT.

Large-scale vision-language pretraining
Vision-language pretraining is an important approach to solving
text-to-image or image-to-text tasks, which trains a deep neural
network with large image and text datasets. One of the vital
training frameworks is CLIP, proposed by OpenAI, which is further
improved by Salesforce to BLIP.39 For text-to-image, GAN as an
image generation prototype model can be integrated with text
representation to generate diverse, authentic-looking but syn-
thetic images.40 Recently, the Diffusion Model,41 a rival model of
GAN emerging with higher computation efficiency and image
diversity, has been incorporated for vision-language representa-
tion pretraining. For example, DALL-E v242 leverages CLIP ranked
representation and diffusion model to generate image under-
standing sentences. To address medical domain-specific pro-
blems, a series of efficient representation learning models are also
developed to empower intelligent healthcare services. BERT
provides an effective solution to efficient inference and analysis
of disease.43 Multi-modal learning is also considered to improve
medical visual-questioning-answer processes.44 Although various
applications are proposed, the study on how to integrate this
powerful model with dental diagnosis is still limited.

Large-scale audio-language pretraining
Compared to vision-language models, audio-language pretraining
does not prevail, but the representation learning with audio and
text data still exhibits impressive audio-to-text performance. Some
medium-scale models like MusCALL,45 CTAL,46 Wav2Seq,47 and
LAVA48 indicate the superiority of representation pretraining on
speech recognition. One of the important large-scale pretraining
models is Whisper,49 released by OpenAI, which is trained on
680,000 h of diverse audio-text pairs from the web. Inspired by the
success of these works, an improved medical speech-to-text
pretraining model is developed to more effectively link vocal
signals to language generation and understanding.50 Since audio-
language pretraining research is still under exploration, the limited
study demonstrates how to employ this pretraining framework to
facilitate oral treatment.

Multi-modal LLM
With tremendous success in cross-modal training, more research
attempts to incorporate multi-modal representation learning to
empower LLMs. As one of the successful attempts, GPT-451

demonstrates the competence of LLMs in a multitude of NLP
applications, such as higher scores in GRE tests and other question-
answering tasks. This implies a higher potential for Multi-Modal LLM
in various areas, such as digital health. For example, multi-modal
learning is conducted to facilitate medical services, which incorpo-
rates images, audio, and texts into training for a more comprehensive
and robust model.43,45 However, due to limited data availability, more
research still attempts to explore the merit of multi-model LLM for
medical fields, especially dental clinic research.

LLM as a ubiquitous solution
As LLMs become increasingly widely recognized, more represen-
tations will be embedded into the models to enhance their
general problem-solving skills. The training process with a larger
scale of data will yield a ubiquitous solution to problems of all
kinds. For example, ChatGPT has served as a valuable tool to assist
medical education for more effective instruction and analysis of
teacher-student interaction.37,38 Medical writing can be assisted or
even accomplished by ChatGPT,32 which enables efficient
documentation. Language challenges in medical research or
clinical processes can also be alleviated by ChatGPT.52

AI TECHNOLOGY FOR CLINICAL APPLICATION
AI technology has promoted clinical applications by improving
patient outcomes, streamlining processes, and reducing costs. In
clinical practice, AI has achieved striking success in analyzing
patient data like brain-tumor segmentation,53 assisting in clinical
decision-making like epidemiological prediction,54 and perform-
ing complex tasks such as surgery and rehabilitation, which
indicates the potential to revolutionize healthcare service. In
dentistry, the convolutional neural network has shown perfor-
mance gain in detecting and classifying maxillofacial fractures
from CT.55 However, subtle details of maxillofacial fractures may
not be accurately detected sometimes due to the unfavorable
resolution of CT scans. Still, more advanced CT scanners can
achieve higher-resolution images in future studies. Medical
researchers also attempt to explore detection methods and
investigate the feasibility of an automated decision-making tool
for dental age estimation using deep-learning and topological
approaches by analyzing the third molar maturity index (I3M) from
456 mandibular radiographs.56 Another recent research proposed
a more comprehensive AI system that can precisely identify
individual teeth and alveolar bones from dental cone-beam CT
(CBCT) images, which enables accurate and precise dental
healthcare.57

The success of language modeling also promotes lots of
research progress in representation learning for efficient medical
services. For example, BioBert58 is developed upon BERT to
achieve a large but efficient text mining model for biomedical
document analysis. ClinicalBert59,60 carries out embedding training
with a large volume of clinical documents to facilitate intelligent
clinical diagnosis processes. SciBert27 also built a large language
model for representation learning with multiple documents across
various scientific research domains.
One of the milestone contributions to biomedical research is

AlphaFold,61 developed by DeepMind. Its success in accurate 3D
protein structure prediction demonstrates the power of large-
scale training to tackle significant challenges in quantitative
biomedical modeling. Since then, a series of innovative large-scale
frameworks have been proposed to enhance AI-powered model-
ing, such as OpenFold62 by OpenAI and BioNeMo Megatron63 by
NVIDIA, etc. In addition, inspired by LLM pretraining schemes,
NVIDIA developed ProT-VAE64 to advance functional protein
design, which indicates the potential of large-scale biomolecule-
language pretraining with an LLM. As technology continues to
evolve, we can expect to see even more innovative applications of
AI in clinical settings, ultimately leading to more effective
healthcare services tailored to the needs of patients.

ON EXPLORING THE CAPABILITY OF LLMS IN DENTISTRY
Automated dental diagnosis with an LLM
Record analysis with text mining. Contemporary medical practice
widely adopts electronic health records (EHRs) for patient
information documentation. Although it facilitates record genera-
tion and management, efficient analysis is still challenging since
massive amounts of records are mixed with structured and
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unstructured data. This challenge leads to substantial amounts of
underutilized data and obstructs patient care and research
improvement. Text mining is able to tackle this challenge by
drawing valuable conclusions and information from textual
material in a mixed structure. Some straightforward modeling
frameworks have been developed to explore patterns, correla-
tions, and trends within textual data.65–68 However, the perfor-
mance of these models is inadequate to process massive amounts
of documents efficiently and accurately.
An LLM helps to find a workaround for this limitation through

training on extensive documents. Given strong competence in
semantic understanding, an LLM can manage documents
independent from structural formats. As shown in Fig. 1, text
mining can also retrieve pertinent facts from unstructured data,
such as free-text notes from healthcare professionals. From this
unstructured data, an LLM like ChatGPT can be used to swiftly
extract pertinent information, like a patient’s unique illnesses or
adverse effects.

Treatment planning with natural language reasoning. As afore-
mentioned, medical service experiences the influx of a large
volume of digital information. In addition to straightforward
document analysis, these data can assist healthcare providers in
customizing treatment plans.69 Although this data analytics is
stimulating, the work is taxing since more labor is involved in
document analysis. LLMs can easily automate document compre-
hension and make treatment plan analysis feasible, which reaps
the benefit of large-scale pretraining. Furthermore, billions of
documents help LLMs cultivate the capability of natural language
reasoning (NLR) to perceive contexts. This capability of NLR can
assist dental practitioners more efficiently in establishing treat-
ment plans tailored to patients’ backgrounds.70 For instance, NLR
algorithms can examine adverse drug reaction (ADR) patterns
linked to various dental procedures and drugs.71 Sometimes, drug
administration can lead to gum bleeding and severer diseases like
bisphosphonate-related osteonecrosis. Dentists can modify their
treatment plans to lower the likelihood of side effects by

understanding the most typical ADRs linked to particular
medications. We maintain that an LLM can facilitate this process
and provide a case of this application in Fig. 2. It has been found
that NLR may be used to identify comorbidities by analyzing
patient records for common risk factors and symptoms, identifica-
tion of ADRs,71 drug safety surveillance,72 and patient education.73

Medical documentation with natural language generation. In
dental clinical practice, a synthetic yet faithfully representative
EHR is essential to efficient medical information conveyance
between healthcare providers and other medical professionals.
Traditionally, this document preparation process is completed
manually. Given keywords, practitioners organize the context
following medical record documentation standards. It can be
quickly assisted with an LLM. Natural Language Generation (NLG)
is one of the important tasks of LLM. Generally, NLG accomplishes
text generation given the understanding of natural language
input, like structured texts or separate keywords. Since a well-
trained LLM is highly skilled in this task, this merit can be
leveraged to automate a series of common documentation tasks,
such as generating reports on medical history, dental procedures,
and treatment plans. For example, Fig. 3 shows an example of
medical report narrative generation with only several keywords by
ChatGPT. The generated texts are well formatted in a professional
structure and encompass all important information in eloquent
expression. The validity of the generated content has been
validated.74,75

Compared to other application fields, the influence of AI in
dentistry has unquestionably been slower and more constrained.
This is mostly because patient privacy concerns have prevented
patient data from being made widely available to the broader AI
research community. Meanwhile, training data plays a crucial role
in the advancement of AI methods. To address this dilemma and
promote methodological advances in dentistry, using high-quality
synthetic quasi-EHRs data is a practical approach since it facilitates
data sharing between healthcare providers and external investi-
gators. We employ ChatGPT 3.5, configured with specific

Narrative of ADRs

"Patient X was prescribed 

Warfarin for a blood clot in 

2019. Two weeks after 

starting the medication, the 

patient experienced severe 

bruising and bleeding from 

their gums. The medication 

was adjusted, and the patient 

was closely monitored for the 

remainder of their treatment."

"One of the potential side effects of Warfarin is 

gum bleeding, which can occur if 

the medication causes the blood 

to thin too much. This can result 

in bleeding from the gums, as 

well as other areas of the body, 
such as the nose, skin, or urine.
It's worth noting that while Warfarin can increase 
the risk of bleeding, it does not directly affect the 
teeth. However, if gum bleeding is left untreated, it 
can lead to periodontal disease, which can cause 
tooth loss and other serious dental problems. 
Therefore, it's important for patients taking Warfarin 
to prioritize good oral hygiene and to work closely 
with their healthcare provider and dentist to 
manage any potential side effects."

Answer to question 1 Answer to question 2

"The patient had been taking 

Warfarin for two weeks before

experiencing severe bruising 

and bleeding from their gums.
However, the duration of the patient's overall 

treatment with Warfarin is not specified in the 

statement. The length of time that a patient 

may need to take Warfarin can vary 

depending on the individual's condition and 

response to treatment, and this would be 

determined by their healthcare provider."

Answer to question 3

"It only states that the patient 

experienced these symptoms 

two weeks after starting the 

medication. However, it's worth noting 

that the duration of the patient's suffering may 

depend on several factors, such as the severity 
of the side effects, how quickly the medication 

dosage was adjusted, and how well the patient 
responded to the changes in their treatment. 
Typically, once the medication dosage is 

adjusted and the patient is closely monitored, 
the side effects of Warfarin should start to 

improve, but the lengthof time it takes to fully 
resolve can vary from person to 
person."

Question 1:

"What´s the side effect of warfarin to tooth?"

Question 2:
"How long has the patient take the

medication?"

Question 3:
"How long has the patient been suffering?"
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Fig. 1 Examples of a text mining application for extracting a patient’s historical record with an LLM like ChatGPT. Keywords are highlighted in
red
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parameters, to generate synthetic data, shown in Fig. 4. The
parameters include max tokens, frequency penalty, and presence
penalty, which were set to enhance diversity in the generated text.
The frequency penalty reduces the likelihood of selecting words
based on their frequency of occurrence, while the presence
penalty imposes a fixed cost on each word in the text. These
penalties encourage the model to generate text with higher

perplexity rather than relying solely on the most probable word
choices. Additionally, temperature scaling is used to adjust the
distribution of probabilities for the next tokens, and a top-p value
of 1 ensures consideration of all available tokens. Post-processing
is applied to refine the generated data to eliminate any artifacts
introduced during the generation process. These post-processing
rules are determined through manual examination. These data
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•  Chief Complaint: Toothache

•  History: Intermittent tooth pain for the past two weeks.

•  Feeling: A dull ache that is occasionally sharp and exacerbated by hot or cold 
   temperatures.

•  Examination: Oral examination reveals a deep cavity on the upper right molar
   tooth. There is no visible swelling or redness in the surrounding area.

•  Diagnosis: Dental caries that has progressed to the pulp.

•  Treatment: The tooth requires root canal therapy to remove the  infected tissue.

"The patient presents with a chief complaint of toothache that has been intermittent 

for the past two weeks. They describe the pain as a dull ache that is occasionally 

sharp and worsens with exposure to hot or cold temperatures. Upon examination, a 

deep cavity was identified on the upper right molar tooth. There is no visible swelling 

or redness in the surrounding area Based on these findings, the diagnosis is dental 

caries that has progressed to the pulp. To address this issue the recommended 

treatment is root canal therapy to remove the infected tissue. This procedure is 

necessary to alleviate the patient‘s pain and prevent further complications. The

patient should be advised to follow proper oral hygiene practices, including brushing

and flossing regularly, to prevent future cavities and dental problems. Overall it is

important for the patient to seek prompt treatment to prevent the infection

from spreading and causing further damage to their oral health."

Keyword list input Patient's r ecord narrative output
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Fig. 3 Example of a narrative output of the Patient’s record generated from keywords with NLG

Narrative of ADRs

"Patient X was prescribed 

Warfarin for a blood clot in 

2019. Two weeks after starting 

the medication, the patient 

experienced severe bruising 

and bleeding from their gums. 

The medication was adjusted, 

and the patient was closely 

monitored for the remainder of 

their treatment."

"In this case, the cause of the 

patient's suffering 

likely a side effect of 

the medication 

Warfarin. Warfarin is an 

anticoagulant medication that 

is used to prevent and treat 

blood clots, but it can increase 

the risk of bleeding and 

bruising, particularly if the 

dosage is too high."

was 

Answer to question 1 Answer to question 2

"If a patient experiences severe bruising and

bleeding from the gums while taking Warfarin,

they should notify their healthcare 

provider immediately. Patients 

should continue to take the

medication as prescribed and 

attend all follow-up 

appointments to ensure that 

their treatment is effective and 

safe. Patients should also be aware of the 

signs of bleeding and should seek immediate 

medical attention if they experience 

symptoms such as easy bruising, 

nosebleeds, or blood in the urine or

stool."

Answer to question 3

"First, the healthcare provider should evaluate the

patient‘s bleeding risk and assess

whether the dosage of Warfarin needs to

be adjusted. They may also need to order blood

tests to monitor the patient’s INR

(international normalized ratio), which is a measure of how

long it takes for the patient's blood to clot. If the patient's

bleeding is severe, the healthcare provider may need

to stop the medication temporarily until

the bleeding is under control. They may also

prescribe medication to help control the

bleeding or refer the patient to a

hematologist or other specialist for

further evaluation."

Question 1:

"What's the cause of suffering?"

Question 2:
"What should the patient do?"

Question 3:

"What should the healthcare provider do?"
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Fig. 2 Examples of natural language reasoning (NLR) application of medication suggestions derived from a patient’s record. Keywords are
highlighted in red

ChatGPT for shaping the future of dentistry: the potential of multi-modal. . .
Huang et al.

4

International Journal of Oral Science           (2023) 15:29 



can be quickly generated and harvested with the assistance of
LLMs. Synthetic EHRs can be more realistic by introducing
variability in the generated data. LLMs can be guided to generate
different patient profiles, medical histories, treatment plans, and
outcomes. This helps mimic the diversity and complexity seen in
real EHRs. Thus, it implies that an LLM has competence in
efficiently preparing medical information and protecting the
privacy of patients.

Cross-modal dental diagnosis with LLMs
Vision-language deployment
Visual grounding: Traditionally caries-related diagnosis is admi-
nistered by dentists through visual and tactile examination. Before
any treatment plan, a quick but comprehensive examination of
oral health conditions is imperative. It sometimes takes experts’
effort and time to diagnose tooth conditions, possibly through
X-ray images and CBCT, and reach a reliable conclusion. Some
existing research has explored the potential of AI-assistant models
in assisting diagnose for caries,3 periodontitis,5 medication-related
osteonecrosis,76 maxillofacial bone fracture,55 oral squamous cell
carcinoma,77 and temporomandibular disorders.78 These diseases
can be diagnosed based on medical imaging. Also, AI-assistant
models for imaging analyses show the potential in assisting dental
treatment, including orthodontics,79 restorative dentistry,80 oral
implantology,6 and oral and maxillofacial surgery.7

However, limited data representation hinders accurate diag-
nosis and treatment planning when the disease is intricate. The
majority of study has been confined to image-only approaches,
which restrain the effective conveyance of information and
explore the untapped potential of AI models in dentistry. LLMs
open the possibility of data-fused diagnosis by leveraging cross-
modal perception. An LLM is highly skilled in aligning textual and
visual representations for image-text analysis, which can facilitate
the diagnosis of tooth problems by X-ray image interpretation.
Specifically, the inference by an LLM can be blended with specific

visualization techniques to identify caries regions. For example, the
practitioners can provide some keywords to query the model of
ALBEF (A Lite BERT for Adaptive Embedding Factorization), which is

specifically designed for image-to-text tasks and is integrated with
Grad-CAM (Gradient-weighted Class Activation Mapping) to visualize
the critical region for decision-making from the ALBEF model. The
warmer color indicates the plausible regions corresponding to the
described words. As shown in Fig. 5, root canal therapy is plausibly
required in the region with a warmer color. Another tangible benefit
of an LLM is training cost reduction. Without fine-tuning a large set of
image data, an LLM can provide plausible affected teeth and likely
locations of dental problems.

Visual question answering: In addition to visual examination of
medical imaging data, diagnosis documentation is more critical to
patient-centered care. From the interpretation of X-ray images,
healthcare professionals will write down the observation, analysis,
and medication suggestions to patients. These documents are also
essential to healthcare big data analytics, while the document
summarization on the medical transcripts takes much time. An
LLM is able to reduce the processing labor significantly through
specific tasks, like visual question answering (VQA). Commonly, a
VQA model can convert the encoded image representations to
word embedding for dental diagnosis questions. With the
diagnosis questions, the answers are generated to facilitate
diagnostic report generation. This VQA-assisted diagnosis can be
performed to assess potential dental health issues.81 As shown in
Fig. 6, the X-ray image of a patient’s teeth is fed into an image
encoder, like BLIP-2, generating a natural language representation,
i.e., embedding based upon image understanding. Meanwhile,
different questions are fed into LLM to generate another set of
question embeddings. Both question and image embeddings are
mathematically combined to generate the interpreted answers to
the questions about images.
However, sometimes the raw image contains too much noise, or

the resolution is not acceptable by the BLIP model; therefore, it is
difficult to extract the desired information through the VQA
model. To address this, training a semantic segmentation model
that divides the areas of the image with different properties into
different classes is a potential solution because it allows an LLM to
learn each element separately.82 For example, as Fig. 7 shows, the

•  Task descriptions

•  Generative pre-trained transformer decoder

•  Generate synthetic data

•  Human evaluation
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Fig. 4 Framework of generating synthetic quasi-EHRs data by LLMs
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soft tissue envelope and nasal septum/concha are classified into
orange and blue segments, respectively, and it is expected to
improve the model performance and enhance image under-
standing to extract the morphology information of nasal
cartilages, as the cartilages are small and embedded by the soft
tissue.83 Figure 7 also demonstrates the potential of training

machine learning models to help reconstruct the nasal cartilage
based on MRI for patients with orofacial clefts, who can suffer
significant nasal deformity.84–87 Due to the limitations of current
imaging software, the differences between the cartilage and soft
tissue cannot be easily defined, but with training machine learning
models, the purpose should be achieved in the future.
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Visual data generation: DALL-E 2, empowered by integrating
GPT-3.5 as encoder and iffusion model as decoder, can be utilized
in the medical field to generate synthetic medical images. Once
the LLM has been trained on real EHR data, it can be used to
generate synthetic quasi-EHRs. By providing prompts or specific
instructions to the model, such as patient characteristics or
medical conditions, the LLM can generate realistic synthetic
records that resemble real-world EHRs. For example, by describing
a patient’s CBCT scan in text, including details of any abnormal-
ities, like an odontogenic cyst or alveolar cleft, which can observe
obvious lesions on the alveolar bone structure, and feeding it into
DALL-E 2, synthetic medical images that match the description
can be efficiently produced in large quantities to improve the
performance of deep-learning models by use as the training
dataset. Figure 8 shows that synthetic medical images can be
generated with varying levels of noise, contrast, or resolution to
create images with specific properties or characteristics that are
relevant to the medical condition being studied. Moreover, patient
privacy can be protected since synthetic medical images are
generated from textual descriptions rather than real medical data.
This technique is valuable for medical research based on any
medical 3D imaging techniques, including CBCT, CT, MRI, etc., and
improving patient care by training machine learning models while
maintaining patient privacy.
Alternatively, LLMs can also be employed to generate medical

illustrations or diagrams based on textual descriptions. For
example, a description of a surgical procedure can be fed into
illustration software to create an accurate and detailed illustration
of the procedure.

Audio-language deployment. Besides imaging and dialogs, a
patient’s voice is also critical to medical diagnosis. A person’s
voice can potentially reveal important clues about their speech
function, as certain vocal characteristics may be indicative of
the function of teeth, tongue, pharyngeal structure, and
muscles. Analyzing these vocal attributes can assist healthcare
professionals in identifying potential health concerns. One of

the common medical diagnosis applications is waveform-
spectrogram analysis on patients’ audio recordings, which are
collected by requesting the patients to read certain words or
paragraphs. The waveform is a curve-based representation of
an audio signal, the shape of which enables acoustic analysis.
The spectrogram is an alternative representation of sounds in
the frequency domain, which facilitates signal processing and
analysis.
Velopharyngeal insufficiency related to cleft palate, oronasal

fistula, and so forth, that affects the contaction between the
soft palate and posterior pharyngeal wall, or changes the
needed separation between the oral cavity and nasal cav-
ity,87–89 exhibits some typical marks on voice waveforms and
spectrograms. In velopharyngeal insufficiency, for example,
nasal emission can lead to distinct variation in speech.90 A
person with velopharyngeal insufficiency may exhibit a wave-
form that shows the reduced intensity of the sound waves
during certain frequencies or periods, leading to altered speech
patterns because of the abnormal airflow in oral and nasal
cavities.91–94 Figure 9 shows an example of a comparison of the
waveforms and spectrograms between normal people and
patients with velopharyngeal insufficiency. It can be observed
that normal people have a more intense waveform and
continuous spectrogram, while the patients’ samples are more
dispersive and broken.
Furthermore, the waveforms and spectrograms of different

patients can be fed into the pretrained LLMs such as GPT-4 for
potential disease and severity diagnosis. As shown in Fig. 10, a pair
of graphs are inputted into GPT-4 while asking for disease
deducing, and the model provides several answers for reference.
Although the final answers show little about the velopharyngeal
insufficiency, the output mentions muscle dysfunction. Also, a
more precise output can be achieved by further fine-tuning with
more labeled patients’ audio data. In addition, NLG can also be
used in conjunction with speech recognition software to convert
voice commands into written text, such as when dictating clinical
notes or treatment plans.
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OTHER POTENTIAL CROSS-MODAL DEPLOYMENTS
Biopsy
A biopsy is a medical procedure in which a small sample of tissue
is removed from a person’s body to be examined under a
microscope. This is typically done to diagnose or investigate

various conditions, such as cancer, infections, or inflammation.
Visualization techniques can be applied to biopsy to understand
the tissue structure and cell morphology better and identify any
abnormalities. Common visualization approaches include light
microscopy, immunohistochemistry (IHC), immunofluorescence
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(IF), confocal microscopy, etc. With the embedding generated by a
vision transformer, the image input can be projected into the
language space and used for understanding the characteristics of
disease identification. For instance, prostate cancer in biopsies95

and pre-implantation kidney biopsy pathology practice96 has been
regarded as potential application fields, which also shows the
potential for biopsy and histological analyses in dentistry, and oral
and maxillofacial surgery.97,98

Blood test
LLMs can help users understand the results of their blood tests by
providing information on the normal ranges for different
biomarkers and explaining the potential implications of high/low
values. The changes in the test indicators also provide rich
information about the human body condition, as well as track the
recovery or disease deterioration process. These changed condi-
tions can affect the patient’s treatment planning and treatment for
dental problems.99 For instance, anemia may present with low
hemoglobin, hematocrit, and red blood cell count, while liver
disease may present with elevated liver enzymes (ALT, AST, and
ALP). These abnormal parameters may postpone the treatments
like oral and maxillofacial surgeries as most of these surgeries are
elective. The internal relationships and connections between
these indicators can be well captured by LLMs, and thus the
potential diseases can be linked with the inputted information.

Gene detection
Gene detection is the process of identifying and analyzing specific
genes or genetic sequences. Classic or more recent approaches can
help obtain the gene sequence, including RNA sequencing, DNA
sequencing, single-cell sequencing, etc. The genes or genetic
sequence can be projected into language embeddings with the
corresponding encoder and then input to LLMs. As the sequence
contains the underlying logic of the gene’s property, the LLMs can
help to understand these logics by learning from large gene samples
after training.100,101 Potential applications may include understanding
gene function, identifying genetic variations or mutations, and
studying the relationships between genes and various biological

processes or diseases, which can further influence the development
of dental problems and treatments related to genetic disorders.

AI SYSTEM FOR DENTISTRY APPLICATION WITH A FULLY
AUTOMATIC MULTI-MODAL LLM
To demonstrate the effectiveness and potential of LLMs’ applica-
tion in dentistry, we present a framework of a fully automatic
diagnosis system based on Multi-Modal LLMs. The system consists
of three input modules from different models: vision input, audio
input, and language input.
The image input could be dental X-ray, cone-beam computed

tomography, and other medical imaging. For semantic classifica-
tion, we focus on optimizing the capture of the critical elements.
By applying vision-language models, the condition of the tooth is
evaluated, potential anomaly or disease is detected, and specific
diagnosis and corresponding suggestions can be given.
In this case, audio sources have two usages: voice anomaly

detection and patients’ narrative understanding. For the first
usage, the system receives the voice input from patients, plots
waveform and spectrogram, and then performs amplitude and
frequency analysis. For the second usage, the patients’ narratives
are collected and converted into texts using speech recognition
techniques. Afterward, the key elements, like the symptoms that
patients stated, can be extracted and summarized to form reports
or bullet points for doctors’ reference.
Targeting automatic diagnosis for dentistry, the AI system can

be embedded into the dental clinics’ internal communication
systems. Thus, a fully developed automatic application can
encompass patients’ information from multiple sources and
provide a professional medical diagnosis, as shown in Fig. 11.

A SPECIFIC CASE FOR THE MULTI-MODAL LLM AI SYSTEM FOR
DENTISTRY CLINICAL APPLICATION
To demonstrate the application of the multi-modal LLM AI system in
dentistry, we use a sample with dental caries to explain how it works
by LLM, including vision-language modeling and treatment planning
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voice, and may affect the ability to produce certain
frequencies. 

3. Vocal cord paralysis: This condition can cause a
weak, breathy voice and may lead to missing
frequencies in the spectrogram.

4. Chronic obstructive pulmonary disease
(COPD): COPD can cause reduced lung function,
which may affect the ability to produce certain
frequencies.

5. Neurological disorders: Certain neurological
conditions can affect the muscles used for speech 
and lead to missing frequencies and low 
amplitude in a spectrogram.
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with natural language reasoning. As shown in Fig. 12, an X-ray of the
tooth is inputted into the system, and the abnormal morphology, like
decay on the tooth, can be located on the X-ray by vision-language
modeling, and then the first question can be answered that dental
caries can be found on the tooth. Then the next question becomes
what the treatment planning for this problem is, and using the LLM
again to output seven steps, including communicating with the

patient, developing a treatment plan, discussing treatment options,
conducting necessary dental procedures, providing oral hygiene
instruction, scheduling follow-up appointments, and emphasizing
preventive measures. However, from the X-ray, we can also observe
potential bone loss near the distal root, which is not detected by the
system according to this pilot study. Thus, further study should be
done to improve the system.

Communicate with the patient: Explain the diagnosis to the
patient, discussing the extent and severity of the dental caries. Use simple
language to ensure they understand the situation and the necessary treatment.

Develop a treatment plan: Create a personalized treatment
plan based on the specific needs of the patient. Consider factors such as the
size and location of the caries, the patient's oral health, and any other relevant
medical conditions.

Discuss treatment options: Present the available treatment
options to the patient, including conservative approaches like dental fillings for
smaller cavities or more extensive treatments like dental crowns or root canal
therapy for larger or deeper cavities. Discuss the benefits, risks, and costs
associated with each option.

Conduct necessary dental procedures: Perform the
chosen treatment procedure. This may involve removing the decayed tooth
structure and restoring the tooth with a filling material or, in severe cases,
performing a root canal or extracting the tooth.

Provide oral hygiene instructions: Educate the patient
on proper oral hygiene practices, including regular brushing, flossing, and the
use of fluoride-based products. Emphasize the importance of maintaining good
oral health to prevent further dental caries.

Schedule follow-up appointments: Plan regular follow-
up visits to monitor the progress of the treated tooth and overall oral health.
These appointments allow for any necessary adjustments or further treatment if
needed.

Emphasize preventive measures: Encourage the patient
to adopt preventive measures to reduce the risk of future dental caries. This
includes maintaining a balanced diet, limiting sugary foods and drinks, and
scheduling routine dental check-ups and cleanings.

Remember, each patient is unique, so individualize your approach based on 
their specific needs and preferences. Regular communication and patient 
education are key to successful management and prevention of dental caries.
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ISSUES AND LIMITATIONS
While there is much excitement around the potential applications
of LLMs in the field of dentistry, some issues and limitations must
be addressed before these models can be widely adopted.

Data quality
Despite rigorous efforts to sanitize and filter the vast amount of
training data, it is challenging to eliminate all harmful or
inappropriate content, which may inadvertently propagate
through the responses generated by LLMs.102 Inherently, these
LLMs operate as sophisticated pattern-matching machines with-
out a genuine understanding of the data they are trained on,
which occasionally leads to nonsensical or inappropriate
responses.103 Compounding these issues, they lack the capacity
to validate the information they generate, remaining incapable of
accessing real-time data or verifying the current status of events
post-training. Moreover, the knowledge base of an LLM is static,
established at the time of training, thus unable to update its
knowledge or assimilate new developments in the evolving data
landscape. One possible solution could be to develop “Human-in-
the-loop system”. Pairing LLM systems with human supervisors
can safeguard important decisions, helping to catch and correct
mistakes that the LLM might make104.

Model bias
Biased clinicopathologic analysis results are the first noteworthy
issue. Because LLMs are data-driven-only models which learn the
features and patterns in the training data, the correctness of the
LLM is highly dependent on the quality and adequacy of the
data.105 Although the LLMs are evolving iteratively, even in the era
of GPT-4, we can’t fully trust the AI-generated clinicopathologic
analysis results, and human-in-the-loop validating work is still
necessary. In the future, neural-symbolic models, which can
combine two approaches (neural networks and symbolic reason-
ing) by using neural networks to learn the statistical patterns in
large datasets and then using symbolic reasoning to perform
logical operations on the learned representations, can be a
potential research direction.106

Data privacy
The patient data breach is another big issue, especially in today’s
privacy-sensitive world. Fine-tuning the LLMs in the dentistry
domain is expected, and a huge amount of patient data is
necessary. A data breach is likely to happen during this process if
the healthcare providers and developers don’t take appropriate
measures to safeguard patient data. It’s crucial to implement strict
data handling protocols and use secure communication channels
for transmitting and storing patient data. In addition to these
security measures, it is equally essential to inform patients about
using their data in advance and obtain their consent.107 Another
possible point of data leakage is dental diagnosis. Inputting
patient data is necessary for these diagnosing applications, where
there is a risk of violating patient privacy and confidentiality. One
possible solution to address this concern is to use offline LLM such
as META LLaMA, where the LLM is run locally on the device or
edge server rather than on a centralized server API Call.108

Computational cost
Computational resources can also limit the application of LLMs in
dentistry. It is reasonable to expect that the LLMs in the dentistry
domain will be operated locally due to data sensitivity. Firstly, fine-
tuning the LLMs in the dentistry domain using local computational
resources can be challenging. Then, running a full LLM to support the
application in the dentistry domain is a waste of computational
resources and unnecessary. A sparse expert model, a type of LLM
that incorporates a set of specialized expert models, can be a future
solution. It can reduce the computational resources required to train

and run LLMs while handling specific tasks or domains more
efficiently than the main LLM.

CONCLUSIONS
The utilization of language models like ChatGPT holds significant
potential for advancing clinical applications and research in dentistry.
By employing these models in a rational manner, a paradigm shift
can be achieved in dental diagnosis and treatment planning. Further
exploration based on diverse medical examination data will facilitate
the realization of precision medicine and personalized healthcare in
dentistry. A crucial future endeavor of practical deployment involves
fine-tuning language models with dentistry domain-specific knowl-
edge. This entails training the models with dentistry teaching
materials, patient records, and other relevant domain information,
resulting in enhanced accuracy by capturing pertinent patterns,
terminology, and context. Consequently, the models acquire a
profound comprehension of dentistry concepts, enabling them to
generate contextually relevant and insightful responses. Customizing
the outputs in alignment with domain requirements and preferences
enhances efficiency, saving valuable time and resources. These
benefits substantially contribute to improved performance and
usability, rendering fine-tuned language models invaluable tools for
research paper composition. Concurrently, the adoption of LLMs will
further reduce medical costs and enhance medical efficiency.
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