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Abstract
Introduction Heat is generated and transferred to the dentine-pulp complex during various dental procedures, such as from 
friction during cavity preparations, exothermic reactions during the polymerisation of restorative materials and when polish-
ing restorations. For in vitro studies, detrimental effects are possible when intra-pulpal temperature increases by more than 
5.5°C (that is, the intra-pulpal temperature exceeds 42.4°C). This excessive heat transfer results in inflammation and necrosis 
of the pulp. Despite numerous studies stating the importance of heat transfer and control during dental procedures, there are 
limited studies that have quantified the significance. Past studies incorporated an experimental setup where a thermocouple 
is placed inside the pulp of an extracted human tooth and connected to an electronic digital thermometer.
Methods This review identified the opportunity for future research and develop both the understanding of various influenc-
ing factors on heat generation and the different sensor systems to measure the intrapulpal temperature.
Conclusion Various steps of dental restorative procedures have the potential to generate considerable amounts of heat which 
can permanently damage the pulp, leading to pulp necrosis, discoloration of the tooth and eventually tooth loss. Thus, meas-
ures should be undertaken to limit pulp irritation and injury during procedures. This review highlighted the gap for future 
research and a need for an experimental setup which can simulate pulp blood flow, temperature, intraoral temperature and 
intraoral humidity to accurately simulate the intraoral conditions and record temperature changes during various dental 
procedures.
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Introduction

Human teeth consist of hard components (enamel, dentine, 
cementum), soft pulp tissue and sensory fibres [1]. Human 
teeth are regarded as a sensory tissue with the pulp, a soft 
connective tissue, containing nerve fibres and nerve endings 
extending into the dentinal tubules. These pulpal nerve ter-
minals are crucial in sensing thermal stimuli [2–4]. Although 
heat transfer in human teeth is a common occurrence in both 
daily life and clinical dentistry, there is a lack of knowl-
edge regarding the actual amount of heat transfer that takes 
place during dental procedures. This is important as trauma 
must be limited to a stressed pulp, where the accumulation 

of thermal, microbial, chemical and mechanical can com-
promise its vitality. Zach and Cohen [5] reported that an 
increase of 5.5°C in temperature can result in irreversible 
pulpitis and has since been the threshold cited by subsequent 
studies as the maximum temperature increase the dental pulp 
can endure. Although this value may have limited clinical 
relevance, it provides a value to which the results of other 
in vitro studies can be compared to. There are various stages 
during the dental treatment which generate heat, affecting 
the intrapulpal temperature: from cutting of the tooth struc-
ture by high-speed dental handpieces (HSDH), exothermic 
reactions during the polymerisation of light or self-cured 
restorative materials and during the polishing step. How-
ever, little is known about the effect of various factors which 
can increase the intrapulpal temperature. Moreover, since 
measuring the intrapulpal temperature in human subjects is 
both unethical and unfeasible, previous studies have adopted 
in vitro simulation models to conduct research on the change 
of intrapulpal temperature.
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This review paper attempts to provide a comprehensive 
understanding on the heat generation during dental treat-
ments affecting intrapulpal temperatures. To address this, 
firstly, the human tooth structure and heat transfer mecha-
nism of enamel and dentine will be explained. Secondly, 
factors affecting the intrapulpal temperature during tooth 
preparation (cutting), crown fabrication, light curing and 
polishing will be discussed. Lastly, in vitro and in vivo meth-
odologies used to study the intrapulpal temperature will be 
discussed, along with its opportunities and challenges. The 
objective of this review is to give an overview of the current 
research done on the heat generation during dental proce-
dures and highlight the areas for future research to improve 
the understanding of the various factors that can affect the 
intrapulpal temperature.

Structure of human teeth

Enamel is the highly mineralised outermost layer, which is 
directly affected during restorative treatment. Below this 
is dentine, a mineralised connective tissue layer composed 
of an organic matrix of collagenous proteins [6]. Dentine 
accounts for most of the tooth structure by both weight 
and volume. It exhibits a complex hierarchical structure of 
organic and inorganic components, composed of approxi-
mately 70% mineral and 20% organic materials (mainly 
type I collagen) and 10% water by weight [6, 7]. In essence, 
dentine serves as the elastic foundation that supports the 
outermost hard and brittle enamel layer, while also acting 
as a protective medium for the innermost soft tissue, the 
pulp [1]. However, perhaps the most distinct feature of this 
layer’s microstructure is the network of long channels—the 
dentinal tubules. These extend outwards from the innermost 
pulp layer towards the exterior cementum or dentine-enamel 
junction (DEJ) [1, 6–10].

The dental pulp is a highly vascularised tissue encased in 
hard dentinal walls, containing a large amount of connective 
tissue, nerve fibres and sensory nerve endings [7]. Its innate 
ability to heal and repair itself has been previously studied, 
with the combination of the inflammatory response as well 
as both the proliferation and differentiation of numerous cell 
types combining to achieve the repair of the pulp-dentine 
tissue [11]. Regardless, the pulp is still vulnerable to impair-
ment, particularly to heat exposure during tooth preparation 
and extensive restorative procedures. Pulp insults are mainly 
results of heat changes, desiccation, exposure to chemicals 
and bacterial infection [12]. Normal intrapulpal baseline 
temperature appears to range between 34 and 35°C [13], 
with increases in intrapulpal temperature exceeding 42 to 
42.5°C sufficient to cause irreversible damage [13, 14]. This 
is of particular importance as an increase in intrapulpal tem-
perature does not necessarily produce an increase in pulpal 

blood flow. Consequently, for the pulp which may already 
be dealing with the effect of thermal changes from tooth 
preparation, any previous inflammatory changes and limited 
perfusion may lead to the potential loss of pulpal vitality 
[15]. The effects of different harmful insults are cumulative, 
and where possible, dental clinicians must avoid materials 
and procedures which may contribute to the potential for 
iatrogenic damage to the pulp [16].

For in vitro studies, irreversible biological effects result 
when intra-pulpal temperature increases by more than 5.5°C 
(that is, the intra-pulpal temperature exceeds 42.4°C). It was 
found that 15% of the experimental teeth developed irrevers-
ible pulpitis or necrosis when this temperature was reached 
[5]. This is shared by another study which determined the 
temperature range for reversible damage to be between 42 
and 42.5°C [17]. Overestimation of the pulp temperature 
changes in in vitro studies is probable, with the lack of 
blood and dentine fluid flow, and lack of periodontal tissues 
[18–20].

Mechanism of thermal insult to a human tooth

When heat is transferred to the pulp, it can cause various 
histopathological changes which may lead to irreversible 
injury. Unlike heat transfer to other materials, the thermal 
behaviour of teeth is a heat conduction process, combined 
with its physiological processes, such as dentinal fluid flow 
and pulpal blood flow [7]. The mechanism of injury includes 
protoplasm coagulation, expansion of the liquid in the den-
tinal tubules, increased outwards flow from the tubules, vas-
cular injuries and tissue necrosis [12, 13, 16, 21]. Moreover, 
because of the variance in thermophysical properties and 
microstructure between the layers in human teeth, heat trans-
fer may also result in thermal stresses that lead to cracking 
within the different layers [7, 22].

It is thought that an intrapulpal temperature rise above 
43°C activates nerve fibres, leading to a reactive increase 
of blood circulation which assists in the dissipation of any 
heat advancing towards the dental pulp [7]. Additionally, the 
surrounding periodontal tissues could also play a significant 
role in promoting heat convection, thus limiting the intrapul-
pal temperature rise [14]. Although the flow of dentine fluid 
can enhance the heat transfer within the pulp upon heating, it 
is the pulp microcirculation of blood that plays an important 
role in the thermoregulation of pulpal soft tissue. In essence, 
the pulp blood flow rate is practically constant within the 
range of 33 to 42°C but increases significantly when the tem-
perature rises above 42°C. Perfused blood works as a heat 
sink under heating and as a source of heat when subjected 
to cooling. Yet, the overall influence of pulpal blood flow 
on heat transfer is thought to be minimal due to its relatively 
low blood volume [7].
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In addition, several other biological factors impact on 
whether the pulp tissue undergoes irreversible effects. This 
includes the amount of water content in the pulp, the changes 
in pulp blood and dentinal fluid flows, previous injury to 
the pulp, the health of the tissues, remaining dentine thick-
ness and insulating quality, duration of insult and the sur-
face area of exposed dentinal tubules [23–28]. Alternative 
consequences, such as necrosis and alveolar bone loss, and 
even ankylosis can also occur when intrapulpal tempera-
tures increase by 3 to 10°C during tooth preparation [29, 30]. 
Higher and longer lasting temperature peaks, and specifi-
cally those exceeding the 5.5 °C increase threshold, may lead 
to pulpal necrosis, and an excessive temperature increase of 
3–10 °C can lead to periodontal malformations (e.g. alveolar 
bone necrosis, bone loss and ankylosis) [29, 30].

Tooth heat transfer

The relatively low values for thermal conductivity (TC) and 
diffusivity of enamel and dentine help protect the deeper 
tissues from thermal insults [31]. Additionally, the charac-
teristic arrangements of its inner structures have a signifi-
cant influence on heat excursion in teeth [7]. Nevertheless, 
greater attention is given to dentine since it is often the layer 
in direct contact with provisional materials and the layer 
likely to be involved in the heat transfer that takes place from 
the surface of the tooth preparation to the pulp chamber.

Even though both enamel and dentine are hard compo-
nents with a high percentage of mineral content, their ther-
mophysical properties are different. TC indicates the ability 
of a material to conduct heat and the TD is the measure 
of the speed with which a temperature change will pro-
ceed through an object [32]. The TD and TC of enamel are 
approximately 2.5 and 1.6 times larger than dentine, respec-
tively [33]. Dental pulp is involved in the maintenance of 
tooth vitality and is vulnerable to heat changes without the 
protection of the enamel and dentine layers. The TC and TD 
of enamel and dentine are relatively low compared to those 
of the pulp; therefore, these two layers are effectively ther-
mal insulators and protect the pulp from deleterious thermal 
irritation [7].

The thermophysical properties of the tooth is a factor in 
its thermal behaviour and depends on the microstructures 
of each tooth layer (Fig. 1). However, because the human 
tooth is a living tissue, the heat conduction process occurs in 
conjunction with physiological processes, including the fluid 
motion in the DTs and blood circulation in the pulp chamber. 
Dentinal fluid flow could improve the heat transfer within 
the pulp during temperature changes. The pulpal blood flow 
also influences the thermoregulation of pulpal soft tissue. 
The increase of pulpal blood flow rate during extra heating 
from hot foods or rotary dental procedures (above 42°C) 

works as a heat sink, while during cooling, e.g. from the 
water jet spray of a handpiece, the blood flow would main-
tain the temperature as a heating source [7].

Residual dentine

Dentine acts as a thermal barrier against harmful stimuli. 
The flow of heat through dentine is proportional to the TC 
of dentine and inversely proportional to the thickness of the 
residual dentine [34]. The key material properties for heat 
transfer in teeth; the TC and TD values are both low for 
dentine [21]. Residual dentine is a critical factor in reduc-
ing heat transfer to the pulp with its thickness seeming to be 
the most important factor in determining pulpal protection. 
A thicker residual dentin layer results in a greater insulat-
ing effect, affecting the quantum of heat transfer to the pulp 
chamber during dental procedures [7, 12, 13, 21, 34, 35]. 
Thus, factors such as the type of tooth preparation (full 
veneer preparation on molars, three quarter preparation on 
molars or premolars) should be carefully considered this 
ultimately determines the amount of residual dentine and 
therefore the level of potential risk to the pulp arising from 
intrapulpal temperature rise [21, 34]. However, in the clini-
cal situation, the thickness of prepared dentine is difficult 
to assess and therefore cannot be used to exclude thermal 
damages to the pulp [21, 36].

Dentinal tubules

Factors such as the presence of dentinal tubules strongly 
impact the porosity, density and TC of dentine [7]. Den-
tinal tubules are a network of channels radiating outwards 

Fig. 1  Different tissue layers present in a human tooth. A Enamel, B 
dentine, C pulp chamber
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from the pulp cavity to the DEJ [1, 6, 7]. Thermal conduc-
tivity of dentine will vary with dentinal tubule density, 
orientation and structure (normal, transparent and repara-
tive dentine, with reparative dentine being the formation of 
a tissue barrier by odontoblast-like cells following pulpal 
insults) [36]. For instance, the TC of dentine decreases 
with increasing volume fraction of dentine tubules [7]. 
Likewise, specific heat of dentine is said to rely on the 
orientation of dentine tubules [7]. These characteristics in 
dentine promote a better transfer of heat towards the pulp 
where heat dissipating mechanisms can be activated [7, 
14]. Yet, these physical properties of teeth differ exten-
sively even for a single tooth but also between different 
teeth (incisor, canine, molar) including age, gender, ethnic-
ity and different donors [37–39].

Previous work has demonstrated that there is a notable 
increase in the number of dentinal tubules in regions near 
the pulp chamber, providing a greater overall surface area 
available for diffusion compared to a much smaller pres-
ence of dentinal tubules in regions closer to the DEJ [8]. 
This spatial variation in density of the dentinal tubules 
range from about 10,000 lumens/mm2 at the DEJ to about 
60,000 lumens/mm2 near the pulp [6]. Therefore, it could 
be concluded that the microstructure of human dentine is 
adapting to not only withstand thermal alterations but also 
to dissipate heat towards the pulp chamber. Accordingly, it 
is postulated that the thickness of the residual dentine layer 
could determine the density of dentinal tubules, where small 
amounts of residual dentine thickness would be more prone 
to intrapulpal temperature increase due to a greater presence 
of dentinal tubules [8].

Dentine thermal conductivity

By combining the residual dentine thickness with the coef-
ficient of thermal conductivity of dentine, it is possible to 
establish the rate of heat flow from a thermal exposure at the 
surface of the cut dentine layer and establish the potential 
risk to the pulp tissue. This relationship is represented by a 
modified thermodynamic equation [35]:

H is heat flow through dentine per unit time, K is the ther-
mal conductivity of dentine, A is the surface area exposed to 
the heat stimulus, D is the thickness of the residual dentine 
layer and t2 − t1 is the temperature difference.

This equation demonstrates that heat flow through dentine 
is directly proportional to the TC and inversely proportional 
to the residual dentine thickness [34, 35].

Heat generated during tooth preparation

Tooth preparation

The restorative process of preparing a tooth to receive a 
fixed prosthetic restoration requires both clinical and tech-
nical considerations [21] as shown in Fig. 2. A critical area 
of concern for the clinician during this, often lengthy and 
involved procedure, is the minimising of external factors 
that lead to an increase in heat production and are poten-
tially harmful to the vitality of the tooth [13]. Two specific 

H =

KA
(

t
2
− t

1

)

D

Fig. 2  Different heat-generating 
procedures of high-speed dental 
handpieces. (1) Partial tooth 
preparation. (2) Full cuspal 
crown preparation. (3) Polishing 
procedure. (4) Bevelling of 
tooth preparation. (5) Light cur-
ing of dental material
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heat-generating variables include the friction between the 
HSDH and tooth and the exothermic setting reaction of self-
polymerising restorative materials used for the temporalisa-
tion of the tooth preparation or the heat generated from the 
light curing of dental resins [7, 13]. Studies have shown a 
direct relationship between the tooth preparation design and 
intrapulpal temperature rise, especially the thickness of the 
residual dentine layer [13, 21, 34–36].

High‑speed handpiece in dentistry

In dentistry, the HSDH is a commonly used equipment in 
any clinical setting. It is used for fast and efficient removal 
of tooth structure in restorations [40]. A good high-speed 
handpiece should be of an ergonomic size and weight, 
have a suitable head size, have adequate power and speed, 
have adequate illumination and have sufficient cooling fea-
tures. Cooling features are important because tooth cut-
ting produces friction and heat between the bur and tooth 
surface. Excessive heat can transfer to the pulp, resulting 
in inflammation and necrosis if not dissipated efficiently, 
as well as structural changes in the enamel and dentine 
[26, 41].

Air turbine versus electrical high‑speed handpieces

There are two main types of HSDHs—an electric micro-
motor which utilises an electric motor to generate the 
required rotational force, and an air turbine which uti-
lises compressed air [42]. The main advantage of electric 
micromotor–driven handpieces over air turbine handpieces 
is the greater cutting efficiency, with a smoother and even 
cutting rate caused by the constant torque maintenance 
under high loads and lack of ‘stalling’ compared to air 
motor–driven handpieces [43–45]. While air turbine far 
outruns electric motor run HDSH regarding speed, reach-
ing speeds as high as 420,000 rpm, they lack the torque 
stability of electric HSDHs. Low torque means that there is 
less rotational force, and with the rotational speed decreas-
ing it may stall at high loads, whereas the consistently high 
torque will maintain a constant rotational speed that does 
not decrease with high loads, therefore exhibiting a greater 
cutting efficiency [42, 46]. The greater cutting efficiency 
of electric HSDHs applies to a variety of dental materials, 
including glass ceramic, silver amalgam and high noble 
alloy [43]. The torque of the handpiece is expressed by the 
power specification of the handpiece [46].

One study found electric handpieces resulted in greater 
decrease in intra-pulpal temperature in comparison to air 
turbine handpieces, due to the improved cutting efficiency 
and friction production [42]. However, with no other stud-
ies validating this result, the impact of handpiece type 

on intrapulpal temperatures changes cannot be concluded. 
In addition, evidence of the effect of input air pressure 
and torque on temperature increase is conflicting between 
studies. Ozturk et  al. [47] found temperature increase 
with increasing air pressure, but Firoozmand et al. [24] 
found no difference in pulpal temperature between high 
torque and low torque HSDH. Both speed and power of 
the HSDH is related to the generated energy, so increased 
HSDH speed results in increased intra-pulpal temperature 
[48]. However, within the handpiece body itself, more heat 
is generated with electric HSDHs. This can result in soft 
tissue injuries when the handpiece is running at maximum 
speed without an effective cooling mechanism [49, 50].

Coolant ports to reduce the thermal shock 
to the tooth

Most modern HSDHs incorporate air or air-water coolant 
ports. These are designed to form a halo around the bur and 
spray high-velocity water and/or air at the tooth-bur inter-
face. This improves visibility, cutting, polishing and cool-
ing efficiency, as well as decreases the frictional heat and 
risk of pulp injury [23, 30, 40, 47, 51, 52]. Schuchard [53] 
conducted a photographic study looking at the action of the 
coolant water droplets while the bur is rotating at working 
speed. He found that with the water volume and pressure 
used in clinical setting, the coolant does not actually reach 
the cutting part of the bur. Instead, the coolant has a cooling 
effect on the entire tooth, rather than just the area of contact 
[53].

Dental handpieces can differ on the number and location 
of their coolant ports, with 1-, 3- and 4-port varieties avail-
able for air turbine, and 1- and 4-port varieties for electric. 
Siegel and von Fraunhofer [54] reported that the introduc-
tion of the 3- and 4-port handpieces was to allow sufficient 
cooling of the tooth if one or more ports become blocked. 
Theoretically, it would be hypothesised that the greater num-
ber of coolant ports would result in a greater cooling effi-
ciency as the coolant would be greater distributed over the 
cutting surfaces. In general, manufacturers have claimed that 
more ports enhance cooling efficiency; however, the results 
from recent studies are inconclusive. Chua et al. [23] demon-
strated that there was no statistical significance between the 
intra-pulpal temperatures following the use of high-speed air 
turbine handpieces with different coolant port designs (1-, 
3- and 4-ports), whereas a later study, Lau et al. [55], found 
a statistically significant difference found between the cool-
ing efficiency with 1- and 4-port coolant design on electric 
micromotor HSDHs.

The coolant port design also influences the cutting effi-
ciency—HSDHs with a multiport coolant design exhibit 
greater cutting efficiency compared to those with a single 
coolant port, even if the 1-port handpiece has a higher 
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coolant flow rate [54, 56]. Similarly, Lloyd et  al. [57] 
observed that cutting with water results in cutting rates three 
times that of dry cutting, with Siegel and von Fraunhofer 
finding that 1-port HSDH had significantly lower cutting 
rates than 3- or 4-spray ports when making groove cuts (with 
intact edges) [54, 57]. However, this difference was only 
observed when performing groove cuts (surrounded by tooth 
structure), and not when performing edge cuts. Groove cuts 
differ as they produce greater increases in temperature, due 
to the concentration of generated heat at the bur interface 
and decreased accessibility of water spray [58]. Addition-
ally, the position of spray ports affects water supply to cut-
ting interface and therefore cutting rate. The authors Siegel 
and von Fraunhofer [54] observed in previous studies that 
cutting rates varied with different spray port numbers and 
positioning, especially if there was a blocked port. Yang and 
Sun [56] conducted a similar experiment on ceramic blocks, 
utilising both edge and groove cutting. However, they found 
that only the output coolant flow rate, and not the number of 
spray ports, affected cutting efficiency.

Type of bur used

There are a variety of burs used by the dentists with HSDHs. 
Studies have concluded that the type of bur used, whether 
it be made of diamond or carbide, and/or its shape, size and 
grit size, depended on clinician preference and is highly 
influenced by equipment used during dental school [59]. 
Diamond burs are the most popular, followed by tungsten 
carbide burs [59].

Current studies on the effect of bur type on the heat gen-
eration and cutting efficiency are inconclusive, with studies 
reporting contradicting findings on the differences between 
diamond and carbide burs. Most agree that carbide burs 
generate less heat and pressure [60] potentially due to the 
different cutting mechanisms—diamond burs tend to clog 
with a grinding action used to remove tooth structure [61] 
whereas carbide burs, with their fluted design, use a cleaving 
action instead. Diamond burs have been found to showcase 
poorer cutting efficiency when compared to carbide burs 
with a thicker smear layer and greater frictional heat pro-
duced [42, 48, 62]. This can be attributed to the action of a 
diamond bur, where a large amount of energy is applied on 
the small cutting surfaces of each diamond grit [58]. Watson 
et al. [48] found that diamond burs produced more tempera-
ture increases, as there is a greater area of contact and more 
friction produced. Nevertheless, several studies have found 
the opposite with lower heat generation with diamond burs 
[61], and greater increases in temperatures with deeper cav-
ity preparations using tungsten carbide burs [62].

Numerous other factors such as the bur size, shape, 
coarseness and amount of surface wear can influence 
the amount of heat generated during mechanical tooth 

preparation. Diamond burs are available in different grit 
sizes, which produce different finishes. Coarser grit burs 
produce less of a smooth surface, and more friction and thus 
heat [63, 64]. In addition, as burs wear out and lose their grit, 
there is reduced cutting efficiency [65, 66]. Similarly, when 
the diamond bur clogs with debris or stall, their generated 
energy creates a significant spike in temperature [58]. In 
addition, there appears to be differences in the burs produced 
within a manufacturer and between different manufacturers 
[61].

Overall, however, studies found that the increase in intra-
pulpal temperature was not clinically significant. In Watson 
et al.’s study [48], all tests with different burs resulted in a 
drop in intra-pulpal temperature. Ercoli et al. [51] and Lau 
et al. [55] also found that despite an increase in temperature 
for some burs, all were still below the critical value to cause 
pulpal damage.

Cutting technique

The cutting technique adopted by dentists can vary by either 
continuously cutting with no pause or intermittent cut-
ting with periods of pauses. A study on cutting techniques 
showed that intermittent cutting produces greater cutting 
effectiveness [67]. In intermittent cutting, heat dissipation 
can occur during the periods of rest where the bur is not in 
contact, resulting in a lower overall temperature increase 
[64, 68, 69]. Similarly, an experimental study also showed 
that continuous cutting with high loads resulted in greater 
temperature increases [68].

Other variables of cutting technique, such as rotational 
speed, operator pressure, depth of the cavity preparation, 
duration and even the differences in the cutting medium 
(extracted teeth versus glass slabs), will also impact the heat 
generated and the results of previous in vitro studies.

Effect of water coolant on intra‑pulpal temperature

Many studies found that air coolant is insufficient, and 
water stream or air-water spray are more appropriate forms 
of cooling when drilling with HSDHs. This is supported 
by both histological studies [70, 71] and studies measuring 
intra-pulpal temperature [47, 48, 71–76].

The two main variables that influence the heat absorption 
ability of the water coolant are its flow rate and the tempera-
ture [27]. Currently, utilisation of flow rates between 30 and 
50mL/min is the standard cooling conditions [27, 47, 51, 52, 
68, 77, 78], with the International Organization for Stand-
ardization recommending the upper level of the threshold 
at 50mL/min [79]. These coolant flow rates are necessary 
to decrease thermal injury with a cooling effect at both the 
cutting interface and the handpiece head, with maintenance 
of adequate operator visibility [25, 80]. If the coolant flow 
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rate is high enough, theoretically, the pulp tissues will not 
exceed the temperature of the water coolant used [41]. When 
sufficient coolant was used, the closer the bur is to the pulp, 
the further the temperature dropped [72]. Leung et al. [81] 
also found that thermal resistivity for air-water spray was 
lower than for water stream cooling at the same flow rate. 
The maximum output flow rate of the HSDH varies with the 
number of spray ports, if the water pressure is kept the same 
[80]. The study found that HSDH with 1 spray port had the 
highest flow rate, followed by 2 ports, and then 3 spray ports.

Temperature of the coolant water also affects intra-pul-
pal temp in cooling. Lower water temperatures have both 
a greater cooling efficiency and a greater heat absorption 
capacity [41]. However, the clinical usefulness is limited 
due to the increased risk of pulp damage with the reduced 
pulp blood flow and decreased waste removal ability. This 
can occur if pulp temperature drops below 21°C [82]. In 
addition, both the operator and patient may be uncomfort-
able when cooler water is used, especially with prolonged 
appointments and patients who suffer from cold sensitiv-
ity. Several studies have recommended the use of room 
temperature water at between 25 and 50 mL/min coolant 
flow rates to effectively prevent pulp injury [47, 52]. Farah 
et al. [41] investigated the impact of three different water 
coolant temperatures, 10°C, 23°C and 35°C, at the cool-
ant flow rate of 50 mL/min. This study concluded that 
water coolant was essential to prevent injury of the pulp 
and soft tissues, and that a coolant temperature of 35°C 
in electric handpieces offers only minimal protection as 
temperature increases were observed. Past studies have 
shown that electric handpieces increase the water cool-
ant temperature, with heat gained when the water travels 
through the handpiece [41], which results in the possibility 
of soft tissue damage [50]. Friction can be generated by 
the motor bearings, which can create heat that results in 
warming of the coolant water [68].

Intrapulpal temperature increase by dental 
provisional crowns

After tooth preparation, the patient receives provisional 
crown(s) while the final dental restoration is made in the 
dental laboratory. The requirement for provisional crowns 
has been mainly derived from the methodological process 
that relies on the indirect fabrication of the definitive res-
toration in the dental laboratory. Provisional crowns must, 
with the exception to the type of material from which they 
are fabricated, resemble the planned final restoration in 
all regards to satisfy areas of critical concern [83]. These 
restorations restore function to the prepared tooth with 

only slight differences to the definitive restoration they 
precede [84].

The overarching aims of provisional crowns can be 
summarised as biologic, diagnostic, aesthetic and mechan-
ical [85]. Biologically, provisional crowns must provide 
adequate contour that stabilises and promotes gingival 
health, and restore functional intercuspal and proximal 
contacts that prevent migration of the prepared tooth and 
movement of the adjacent teeth, as well as provide imme-
diate protection to the pulpal tissues [86, 87]. The latter 
is of particular interest to this review as an unfavourable 
combination of the type of material and the method of fab-
rication could be detrimental to the pulp of a vital tooth. 
Therefore, clinicians must take extreme caution during the 
provisional restorative phase to ensure the health of the 
underlying tissues.

Fabrication methods and types of dental provisional 
crowns

There are two main methods for fabricating provisional 
crowns: the direct and the indirect method. The direct 
method places acrylic resin material onto the prepared 
tooth, with the risk of thermal injury at temperature 
increases of 5.6°C in the pulp [18, 36]. Most chair-side 
materials in use by clinicians for provisional restorations 
lead to a rise in temperature during polymerisation [88], 
and may also cause irreversible damage to the gingival and 
pulpal tissue [89]. Furthermore, the presence of free mon-
omer in direct contact with open dentinal tubules can be 
harmful and cause pulp inflammation if it leaches towards 
the pulp tissue [90, 91]. For the indirect method, materi-
als are able to be cured in a hydro flask which shields 
the freshly prepared tooth from the heat released from the 
polymerising resin [83].

Polymers used in provisional restorative materials are 
classified either by their chemistry or by method of curing. 
The chemistry group of polymers include acrylics, compos-
ite resin and polycarbonate [92]. Methods of curing include 
chemical, heat, light or dual-activated. Predominately 
available commercial options for provisional restorations 
are either composite resin (bis-A-glycidyl methacrylate, 
bis-acryl, urethane dimethacrylate) or methacrylate resin 
(methyl methacrylate, ethyl methacrylate, vinyl methcrylate, 
butylmethacrylate)–based materials. The choice of material 
should be based on the clinical needs and longevity of the 
provisional restoration.

Exothermic properties of provisional materials

Provisional crown materials available today have in com-
mon that they cure by radical polymerisation resulting in 
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either a non (mono-methacrylates) or highly cross-linked 
polymer network (di- or multifunctional methacrylates) [36]. 
It is the exothermic character of radical curing that leads to a 
significant amount of heat being generated during the course 
of polymerisation [36]. The reaction of these polymer-based 
provisional materials is through additional polymerisation, 
where carbon-carbon double bonds are converted to new 
carbon single bonds. The exothermic heat released during 
the polymerisation process is a direct result from the dif-
ference in energy between the two bonds [21, 34]. Thus, 
there is variety in the amount of heat generated for different 
materials. For example, in a previous study examining the 
temperature profiles of a direct (Luxatemp) and preformed 
(Hi-tempo) provisional crown materials, both of which is 
placed directly on the tooth preparation, a higher tempera-
ture increase was noted with the preformed crown system 
[93].

Heat generated during the placement 
of the final dental restoration

The placement of the final dental restoration often requires 
adjustments, with the generated frictional heat trans-
ferred to the pulp chamber [44]. This heat transfer will be 
dependent on the thermal conductivity and diffusivity of 
the material/materials being used in the construction of the 
final restoration and the material of the bonding system.

Generally, thermal conductivities increase in the follow-
ing order: polymers < ceramics < metals [94]. The higher 
value of thermal conductivity means that the material has 
greater ability to transmit thermal energy. However, if the 
temperature gradient changes with time, thermal diffusiv-
ity is used to determine the amount of heat transferred. 
Therefore, the thermal diffusivity of a dental restorative 
material might be more important than its thermal conduc-
tivity. This property also depends on the material’s density 
and heat capacity. Thermal diffusivity is not in proportion 
to the thermal conductivity, which means that a material 
might have a low thermal diffusivity and relatively high 
thermal conductivity.

Gold is sometimes utilised as an alloy material for den-
tal restorations which has about 500 times the thermal con-
ductivity (297  Wm−1K−1) and 600 times the thermal diffu-
sivity (1.18  cm2s−1) than that of dentine. Hence, compared 
to dentine, gold restorations provide very little protection 
to the pulp against the thermal stimulation. However, the 
thermal conductivity of zirconia (2.5–2.8  Wm−1K−1) is 
extremely low compared to metallic materials and alumina 
(30  Wm−1K−1) [94] with lithium disilicates having a ther-
mal conductivity of 5.2  Wm−1K−1 [95].

Intraoral polishing of fixed dental restoration

Temperature rise is a common occurrence and could eas-
ily exceed the 5.5°C threshold value during the intraoral 
polishing procedure [96]. Zirconia, for example, has much 
higher hardness, elastic modulus and fracture toughness 
than other all-ceramic restorative materials [97]. There-
fore, it requires much higher frictional forces (e.g. with 
higher speed and/or harder polishers) to create a smooth 
surface if it is not glazed, which is known to generate 
more heat [97, 98]. İşeri et al. [99] studied the tempera-
ture changes during clinical procedures, focusing on the 
periodical and continual grinding of disc-shaped zirconia 
specimens (15mm diameter × 1mm) with micromotor at 
22,000 rpm and high-speed handpiece at 320,000 rpm. The 
study showed that dry grinding and adjusting zirconia pro-
duced a temperature rise of 63.4°C, by far exceeding the 
critical temperature which is known to cause pulp damage.

Chavali et al. [98] investigated the influence of two pol-
ishing systems and three speeds on the heat production 
of zirconia. In order to compare the heat generation via 
intraoral polishing, three different types of polishing agents 
were used to polish zirconia specimens into 4-mm-thick sec-
tions at either 5000, 15,000 or 40,000 rpm with slow-speed 
dental handpieces [98]. The results showed that no group 
generated surface temperature over 42°C, which is just under 
the critical temperature for pulp damage reported by Zach 
and Cohen [5].

Heat generation during direct restoration with light 
curing

The heat generated during photopolymerisation using vis-
ible light-curing units has the potential of causing damage 
to pulp tissue. The temperature elevation occurs due to 
increased exposure time to light during irradiation. Stud-
ies have identified photopolymerisation as a big risk to 
pulp health demonstrating a temperature rise between 4.3 
and 7.5°C during photopolymerisation of composite discs 
[100]. Another study recorded intrapulpal temperature rises 
ranging from 1.5°C to more than 4°C during light-curing 
of composite resin restoration of extracted teeth. Yet, clini-
cal experiments have demonstrated that the pulp appears to 
recover from transient heating from light-curing units [14]. 
Some consideration must be given to the combination of the 
temporary material and the type of light-curing unit used as 
its output may influence the final temperature rise. The heat 
emission during polymerisation may induce a temperature 
rise that may be of biological concern. With regard to tooth 
preparation in prosthodontic dentistry, the probability of 
damage to the pulp is real when the temperature increase due 
to polymerisation is greater than the physiologic heat dis-
sipation mechanisms of the dental periodontal system [21].
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Influence of light intensity on temperature raise 
of BCRs

As discussed previously, the increase in light intensity is 
associated with increasing concern of heat generation within 
the BCRs and subsequent pulpal injury. Balestrino et al. 
[101] found a difference in heat generation between various 
types of light curing units. They concluded that the LEDs 
produced higher temperature rises than the QTH, and the 
LED with lower irradiance causing higher temperature rises 
than the LED with higher irradiance [101]. However, the 
heat dissipation design of a light-curing unit should also 
be taken into account. Armellin et al. [102] provided an 
alternative perspective on the heat generation of BCRs, by 
stating that the temperature increase during resin curing is 
a function of the rate of polymerisation, which is not only 
associated with the energy from light curing units, but also 
due to the exothermic polymerisation reaction and time of 
exposure.

Par et al. [103] found that temperature rise during cur-
ing ranged from 4.4 to 9.3°C and was significantly reduced 
by curing with the lower intensity blue curing unit. This 
study also suggested that the correlating temperature rise 
of radiant energy, in combination of material × thickness × 
curing unit, revealed a highly significant linear relationship 
[103]. However, there is no direct evidence that support the 
relationship between the light intensity on heat generation 
of BCRs and the subsequent pulpal injury. Uhl et al. [104] 
argued that no considerable difference in the temperature 
increase within the pulp chamber model was found for the 
different light curing units and composites.

Methods to measure the change of pulpal 
temperature during dental procedures

The most used method for measuring heat generation is by 
measuring real time temperature change via thermocouples, 
which is a reliable and relatively simple method to meas-
ure temperature change within dental materials or measur-
ing heat transfer across the tooth structure [5, 68, 74, 75, 
105–115]. There have been variations in the methods of 
measuring heat generation which could potentially lead to 
differences in results. For example, the type of thermocouple 
wires used were different. Some studies used J-type ther-
mocouples [101, 102] while others used K [104] or T-type 
[103]. However, there has been no evidence that suggest the 
types of thermocouples can have significant influence on 
the measurement of real-time temperature change in dental 
settings or dental materials.

Measurements of heat generation and related temperature 
change can also be affected by the position of the thermo-
couples placed, as a change in location of the probe, which 

can result in variation of measurements and inconsistent 
results [93]. Additionally, a silicone heat-transfer compound 
injected into the pulp chamber is used to help transfer the 
heat from the walls of the pulp chamber to the thermocou-
ple [23, 93]. Measurements of heat transfer can be affected 
by the placement of the thermocouple, which needs to be 
in the same position at each measurement to minimise any 
variations that can be caused by any variant location of the 
probe [88]. Radiovisiography can be used to determine 
proper positioning of the thermocouple probe, as well as the 
residual dentine thickness [93]. To minimise this variation, 
radiovisiography can be adapted to aid in proper positioning 
of the thermocouple probe [102, 116].

Often specimens are prepared either in disc shapes or 
by using actual tooth preparations. As shown in Table 1, 
previous studies appear to largely employ molars for their 
studies with few using pre-molars and only two studies 
used dentine discs. In general, when using tooth speci-
mens, the design had been shaped to represent real case 
applications by using tooth preparations for either crown 
or cavity restorations. From the literature, there also seems 
to be a systematic preference to using thermocouples to 
measure changes in temperature. Additionally, most stud-
ies have adopted some form of metallic material to fill the 
cavity of the pulp chamber to facilitate heat transfer to the 
thermocouple. On the other hand, it is surprising that most 
studies had a small sample size (n=5) and although two 
studies used water baths to simulate intraoral conditions, 
with only one study having attempted a model to simulate 
the complex intrapulpal fluid flow. Many studies listed in 
Tables 1, 2, 3, 4 had one thermocouple located in the pulp 
chamber. Thus, they were interested in only measuring 
the intrapulpal temperature change, rather than the heat 
transfer from outside the enamel down to the pulp (during 
dental procedures/restorative materials). The difference in 
methods adapted in various studies makes it difficult to 
compare their results. Furthermore, one common limita-
tion of these in vitro studies is the lack of blood circu-
lation seen in vital pulp and associated heat dissipation. 
Overestimation of the pulp temperature changes in in vitro 
studies is probable, with the lack of blood and dentine fluid 
flow, and lack of periodontal tissues [18–20]. This could 
limit the representativeness of the results to vital human 
dentition.

Experimental setup to simulate intraoral 
environment

Although thermogenesis during various dental procedures 
is extremely common, the amount of heat generation needs 
to be measured for providing clinical implications for better 
instruction and instrument application [36]. Heat transfer in 
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teeth commonly depends on the geometry of the tooth itself, 
material properties and biological function. The biological 
function would be the biggest challenge for the experimental 
setup. In vivo experiments reflect the active processes within 
a tooth, whereas the experimental measurement of in vivo 
temperature changes within tooth pulp is impractical. Obvi-
ously, the in vitro test would be the only choice and the way 
how the simulation system is built up would influence the 
accurateness and reliability of the results. For mimicking the 
natural intraoral environment, three main factors should be 
considered: temperature, intra-pulpal blood fluid and humid-
ity. Also, there are several integrated simulation systems of 
the intraoral environment used by previous studies, which 
could be referred to for setting up a more realistic and ideal 
experiment. Various methodologies applied across previous 
studies that stimulated the above three factors are summa-
rised in Table 4.

Effect of pulpal blood flow and microcirculation 
model

Pulpal blood flow (PBF) which varies with external stimuli 
helps maintain pulpal temperature by providing circulation 
and absorbing or providing heat [117]. Kodonas et al. [118] 
reconstructed pulpal microcirculation by running 37°C water 
through extracted human teeth and found significantly lower 
temperature increase under the microcirculation model. 
However, PBF varies with external stimuli. It decreases 
when the pulp is cool and increases significantly when pul-
pal temperature increases above 42°C and clinically used 
vasoconstrictors slow or stop PBF [119].

Most studies evaluating the heat generation via den-
tal procedures, such as Chavali et al.’s study [98], were 
designed and completed at room temperature (24.0 ± 
0.3°C) and with ambient humidity [34, 99]. However, the 
surface temperatures of the dentition and soft tissues have 
been found between 30 to 35°C and 32 to 37°C, respectively 
[120]. Amsler et al. [121] showed that the temperature range 
of the oral cavity was 26 to 29°C.

In Dias et al.’s study [84], they investigated the real-time 
pulp temperature change during temporary crown fabrica-
tion, comparing the heat generation during two different 
temporary crown systems and at different tooth sites. In 
Chua et al. and Dias et al.’s studies [23, 93], the authors 
simulated the pulp temperature by adding 37°C water in 
the container where the teeth specimens were fixed during 
the experiment (Fig. 3). These two studies highlighted the 
importance of conducting the experiment with 37°C water 
to simulate the baseline pulp temperature as the experiments 
carried out at room temperature had a significant impact on 
the temperature profile. For example, when pulp tempera-
ture was measured with and without 37°C water during a 
self-polymerising temporary crown fabrication, there was Ta
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e 
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almost 20°C difference in pulp temperature between the two 
techniques (Fig. 4). When compared to the results from a 
previous study by Kim and Watts [34] using the same crown 
material conducted at room temperature, the authors found 
that while the pulp temperature stabilised at 37°C, the tem-
perature recorded in the pulp chamber was 69 times lower 
[34, 93].

In Chavali et al.’s study [98], the polishing was also 
assessed without pulp temperature simulation. They dis-
cussed that dry polishing had the possibility to affect the rate 

of evaporation and thereby cooling rate. Their results of the 
temperature increased to 42°C from the intraoral polishing 
may have come from the fact that the experiment was con-
ducted at room temperature and may have increased when 
it was done under pulp temperature simulation conditions 
[98]. In order to determine the reference values of the two 
intraoral factors, Park et al. [122] assessed the accuracy of 
two intraoral scanners utilising a box-shaped intraoral envi-
ronment simulator to mimic the temperature and humidity 
of the mouth (Fig. 2b). Then, in Farah’s studies [41, 123], an 

Fig. 3  The example of intraoral 
simulation system; (a) Chua 
et al. [23]; (b) Park et al. [122]; 
(c) Farah [41]; and (d) Farah’s 
[123] experimental setup

Fig. 4  Different temperature profile graphs found from Dias et al.’s study [93] with (37°C water bath; WT) and without (room temperature; RT) 
pulp temperature simulation.
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incubator at 37°C ± 1°C was used as the simulation chamber 
of the intraoral temperature to evaluate the effect of cooling 
water temperature on the temperature changes in the pulp 
chamber (Fig. 2c, d). These two studies successfully simu-
lated the intraoral temperature, but pulp flow and intraoral 
humidity were not simulated in this study.

Intra‑pulpal blood flow and intraoral humidity

Surveys such as that conducted by Goodis et al. [124] and 
Mülle and Raab [125] showed that the pulp blood flow prob-
ably mediated the effective homeostatic mechanism within 
human teeth, while many in vitro heat transfer studies of 
human teeth were carried out with cleaned and empty pulp 
chambers. Linsuwanont et al. [126] reported that, under tem-
perature fluctuations, any fluid movement either away from 
or towards the pulp would inevitably result in the redistri-
bution of the pulp chamber temperature. Lin et al. [7] also 
briefly stated that the TC and heat capacity of teeth of empty 
pulp chambers were significantly different from filled cham-
ber with pulp soft tissue.

In Kodonas et al.’s research [118], it found that the heat 
transfer experiments conducted without pulpal simulation 
would result in temperature increase of a greater magni-
tude than those with pulpal simulation. In order to simulate 
the vital dental pulp, Hannig and Bott [14] filled the pulp 
chamber with warm water to mimic heat transfer through 
soft tissue in the pulp chamber. Attrill et al. [127] filled the 
dead space of pulp chamber with a ‘pulp phantom’ which 
provided a thermal conduction environment similar to the 
vital dental pulp and Chua et al. [23] and Farah [41] utilised 
a high-density polysynthetic silver thermal compound inside 
the pulp cavity to improve conductivity. Nevertheless, Han-
nig and Bott [14] reported that the influence of pulpal blood 
flow on the thermal behaviour of the dentine-pulp complex 
cannot be simulated by stationary water inside the testing 
container. Chua et al. [23] also suggested that a better pulpal 

simulation experimental setup would help to find the more 
exact results of the temperature change. However, this will 
be challenging to accurately replicate due to its dynamic 
nature and changes in flow following different stimulations, 
such as temperature increases causing an increase in blood 
circulation [14]. Previous studies have many attempts to 
simulate this flow. An earlier research, Daronch et al. [13], 
noticed the deficiency of empty pulp chambers, which lim-
ited the direct application of the measurement data of in vivo 
situations, and employed an infusion pump connected to the 
tooth roots through a small diameter tube. This device deliv-
ered water at a speed of 0.0125 ml/min to simulate the pulpal 
blood flow. At the same time, the tooth was immersed into 
a water bath up to the cement-enamel junction. Then, Farah 
[123] used a curved needle connected to a peristaltic pump 
with a controlled fluid flow rate to simulate the pulp blood 
flow. This study also concluded that simulated pulpal blood 
flow resulted in a lower increase in the pulp chamber tem-
perature, compared to when pulpal blood flow was simulated 
[123] (Fig. 5).

The relative humidity of the oral cavity has been found 
to vary in the range 78 to 94% during operative dental pro-
cedures [120, 121, 128]. Breathing through either nose or 
mouth showed no significant effect on the relative humidity 
[121]; however, the relative humidity would have decreased 
once the use of the rubber dam was completed [120]. 
Bicalho et al. [129] constructed a chamber to mimic the oral 
environment and evaluated the effect of the temperature and 
humidity. They controlled the humidity by a water spray sys-
tem which was activated automatically to maintain a pre-set 
humidity value of either 50 or 90% at 22 or 37 °C. According 
to their study, the temperature and humidity had a significant 
influence on the mechanical properties of restored teeth with 
composite resins [129]. In another study, the flexural modu-
lus and flexural strength properties of composite were not 
negatively influenced by the simulated intraoral conditions 
of 35°C at 90% relative humidity [130].

Fig. 5  Temperature recorded in 
the pulp chamber during fab-
rication of temporary crowns; 
note the effect of different con-
ditions of water flow rate [123]
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Conclusion

Various steps of dental restorative procedures have the 
potential to generate considerable amounts of heat which 
can permanently damage the pulp, leading to pulp necrosis, 
discoloration of the tooth and eventually tooth loss. Thus, 
measures should be undertaken to limit pulp irritation and 
injury during procedures. This is especially true as damage 
to the pulp is accumulative and past insults affect the restora-
bility of the tooth. Despite the importance of this topic, there 
are limited studies available which investigate the influenc-
ing factors and dental procedures. Experimental setups of 
simulating intraoral environment have been employed by 
most previous studies using an incubator at 37°C to mimic 
the intraoral temperature [23, 93, 123]. However, there is 
limited research which simulated the pulp blood flow using 
the peristaltic tubing pump and temperature [123]. The use 
of intraoral humidity chamber was employed by one study 
to simulate the relative humidity around natural teeth, which 
is an important variable [122]. This highlights the gap for 
future research and a need for an experimental setup which 
can simulate pulp blood flow, temperature, intraoral tem-
perature and intraoral humidity to accurately simulate the 
intraoral conditions and record temperature changes during 
various dental procedures.
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